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CHAPTER I

Introduction

This thesis consists of seven papers/chapters on game theoretic issues, mostly pub-

lished, accepted or resubmitted for publication. Their submission/publication status is

indicated later on in this introduction; more detailed information is provided at the begin-

ning of the single chapters. The thesis�title �Beyond basic structures in game theory �tries

to capture the common theme of the papers, structures which transcend certain �basic�

game theoretic structures. In the non-cooperative part (Part 1), we consider isomorphism

of extensive games which preserves not only the standard form but also recognizes gen-

uinely sequential features of the extensive form. In the cooperative part (Part 2), we

consider TU games with cooperation or bargaining restrictions which are modelled by

additional structures.

In the following, we �rst introduce basic game theoretic concepts in an informal way

and then present the motivation and the main results of these papers.

1. Game theoretic structures and related solution concepts

In contrast to decision theory, game theory deals with situations where (in principle)

more than one person is involved. There, in general, what one person can achieve depends

on what other persons do. In game theory, such situations are modelled by formal struc-

tures called games which re�ect in a more or less detailed manner those aspects of the

underlying situation which are considered to be relevant. The detailedness distinguishes

two of the major parts of game theory� non-cooperative game theory (NGT) and coope-

rative game theory (CGT). Roughly speaking, NGT is strategy-oriented, i.e., it models

how players can achieve their objectives, while CGT is payo¤-oriented, i.e., it models what

players can achieve but not how they can do so (van Damme 1998, pp. 195) .

In this section, we �rst illustrate concepts from both parts of game theory in an infor-

mal way. From NGT, we consider extensive games and its derivatives, the normal form,

the agent normal form, and the standard form, and solution concepts as Nash equilibrium

and subgame perfect equilibrium. From CGT, we consider TU games which are enriched

by coalition structures or cooperation structures and one-point solution concepts as the

Shapley value, the Aumann-Drèze value, the Owen value, and the Myerson value.

1
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Figure 1.1. The extensive game �

1.1. Extensive games and its derivatives. The concept of extensive games, formally
de�ned in Section II.2.2 (pp. 29), is best understood by an example. We consider an

extremely simpli�ed version of �poker�. There are just two players, 1 and 2; who both

pay an ante (participation fee) of $1. Player 1 draws one card from a deck. With a

probability of 13 he obtains a �lower� card and with a probability of
2
3 a �higher� one.

Unlike player 2; of course, player 1 knows what kind of card he has drawn. Then, player

1 has two options, either to fold or to raise by $2: If he folds, his ante is forfeited and the

game ends. In case player 1 raises, player 2 has the same two options, to fold or to raise

by $2. If he folds, again, his ante is forfeited and the game ends. In the event of both

players raising, player 1 takes the pot if he drew a high card, otherwise player 2 is lucky

to do so.

This situation can be modelled by the extensive game � in Figure 1.1. Its basic

ingredient is the game tree which models the sequence of possible choices. It consists of

nodes (�) and top-down directed edges (� � ) which connect nodes (�� ��). The node
on top which has no predecessor is called the root ; the nodes at the bottom line which

have no successors are called terminal nodes. Nodes that are not terminal indicate points

at which decisions are made, decision nodes. The edges pointing downwards from such a

decision node stand for the options available to the player who decides at this node. The

latter is indicated by the player�s name placed top left or top right (1` or 1H for player 1

and 2` or 2H for player 2).

The root models the chance event of player 1 drawing a low or a high card. One could

think of a chance player 0 who selects a low card (left edge) or a high card (right edge)

with the probabilities in brackets. The fact that player 1 knows which kind of card he has

drawn is modelled by two decision nodes, 1` and 1H, where 1` stands for having drawn
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a low card and 1H stands for having drawn a high card. Depending on this information,

player 1 can either fold or raise. While option f at 1` stands for folding with a low card,

F stands for folding with a high card, for example. If player 1 decides to fold, actions f

and F; a terminal node is reached and the game is over. In this case, player 2 has not

the opportunity to make any decision. But if player 1 raises at one of his decision nodes,

then the information set of player 2 is reached. However, player 2 has no information on

the kind of card player 1 has drawn. This is indicated by a dashed line connecting the

decision nodes 2` and 2H:

Collections of decision nodes that cannot be distinguished by the player who controls

them are called information sets. Whenever a player�s information set contains a single

node only, this player knows what happened in the course of the game up to this informa-

tion set. A game in which all information sets are singletons is called to exhibit complete

information, otherwise the information is incomplete. As we have seen, information sets

may contain more than one decision node. In this case, of course, at any of these nodes,

the player must have the same number of options; otherwise he could distinguish them

by these numbers. Options that correspond to the same act are called actions and are

indicated by labels at the respective edges. For example, the right options at 2` and 2H

stand for the same act of player 2; to raise, and are both marked as action �: Compare

this with player 1:

Finally, the terminal nodes represent the results of playing the game. The players�

preferences over results are indicated by payo¤s which usually are viewed as von Neumann-

Morgenstern utilities. In our example, the respective net gains are put below the nodes;

the left number is for player 1 and the right one for player 2: If, for example, player 1

draws a low card and folds, he looses his ante of $1; net payo¤�1; and player 2 takes the
pot of $2, net payo¤ 1: Or, if player 1 draws a high card and raises, and player 2 raises

too, then player 1 takes the pot of $6; net payo¤ 3; and player 2 looses his ante of $1 and

the raise of $2; net payo¤ �3:
A (pure) strategy of a player is a comprehensive plan for playing the game. Even

though player 2 may not have to make any decision, he has two strategies, (') and (�) :

In contrast, player 1 has two make plans for two contingencies, drawing a low or a high

card, and these plans can be independent. Hence, he has four pure strategies, (f; F ) ;

(f;R) ; (r; F ) ; and (r;R) : Any pair of strategies (strategy pro�le) induces a probability

distribution on terminal nodes. For example, the strategies (f;R) and (') lead to the �rst

and the fourth terminal node from the left with probabilities 1
3 and

2
3 ; respectively. Or,

(r;R) and (�) lead to the third and �fth terminal node, again, with probabilities 13 and
2
3 ;

respectively. Combining these probability distributions with the payo¤s at the terminal

nodes gives the (expected) payo¤s of strategy pro�les. For example, the strategy pro�le
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Figure 1.2. The normal form NF(�)
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Figure 1.3. The agent normal form ANF(�)

((f;R) ; (')) yields the payo¤s

1

3
� (�1) + 2

3
� 1 = 1

3
and

1

3
� 1 + 2

3
� (�1) = �1

3

to players 1 and 2; respectively. Analogously, the strategy pro�le ((r;R) ; (�)) gives the

payo¤s
1

3
� (�3) + 2

3
� 3 = 1 and

1

3
� 3 + 2

3
� (�3) = �1:

The assignment of payo¤s to strategy pro�les suggests a much less complex repre-

sentation of � as in Figure 1.2 called the normal form of �; NF (�) (von Neumann &

Morgenstern 1944) . The normal form of � just comprises the players, their strategies,

and all players�payo¤s for all strategy pro�les. Transforming � into NF (�) some infor-

mation is lost, in particular on the structure of information sets and on the sequence of

actions. Nevertheless, one could argue that in the course of playing an extensive game no

new information emerges. Hence, the players could foresee all contingencies and indepen-

dently/simultaneously plan their behavior in advance. Since in real life people frequently

make simultaneous decisions, normal form games, also called strategic games and formally

de�ned in Section II.2.1 (pp. 29), are of interest independent of an underlying extensive

game.
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Another representation of � is presented in Figure 1.3, the agent normal form ANF (�)

due to Selten (1975) , formally de�ned in Sections IV.2 (pp. 64) and II.2.1 (pp. 29). As

the normal form, ANF (�) is a strategic game. In contrast to NF (�) ; there are separate

players for each information set, the information set agents. The agent for player 1�s

information set at 1` chooses the row, the agent at 1H the column, and the agent for

player 2�s single information set chooses the matrix. These agents are assigned the same

payo¤s as the player to whom they belong; the payo¤s are listed from left to right for the

agents at 1`; 1H; and 2; respectively.

At �rst glance, ANF (�) may seem to contain more information than NF (�) : This is

not the case. On the one hand, ANF (�) contains more information on the information

sets than NF (�) ; on the other hand, ANF (�) does not say anything about the assignment

of agents to players, i.e., in this respect, ANF (�) contains less information than NF (�) :

Adding this information to ANF (�) ; one obtains the standard form SF (�) of � due to

Harsanyi & Selten (1988) , formally de�ned in Sections II.2.1 (pp. 29) and IV.2 (pp. 64),

which is more complex than both ANF (�) and NF (�) :

So far, we have represented aspects of real-life situations as games. In particular,

we have formal expressions for the choices available to the persons involved. Although

that may not be completely without interest in itself, one certainly would like have some

predictions on the players� behavior or one would like to give them advice on how to

behave, i.e., one would like to have some device to single out one or some courses of action

in a game. One such device are equilibrium concepts.

The most basic equilibrium concept is the Nash (1950) equilibrium. A Nash equilib-

rium (equilibrium, for short) is a strategy pro�le, i.e., a comprehensive plan of action for

all players, where no player wishes to deviate from his plan unilaterally. Again, this is

best explained by examples.

Consider the extensive game � in Figure 1.4 and its normal form NF (�) in Figure

1.5 where player 1�s payo¤ is the left one. These games have two equilibria, the strategy

pro�le (L; r) and the strategy pro�le (R; `) : Let us check this. If just player 1 deviates

from L to R in (L; r), his payo¤ decreases, �1 < 1; and if player 2 deviates from r to

`; his payo¤ remains unchanged, 1 = 1: Hence, no player gains by unilaterally deviating

from (L; r) ; i.e., (L; r) is an equilibrium. Similarly, the players cannot gain by unilaterally

deviating from (R; `) ; 2 > 1 and 0 > �1: Hence, (R; `) also is an equilibrium. In contrast,
the strategy pro�les (L; `) and (R; r) are not so. For example, player 1 gains by choosing

R in (L; `) ; 2 > 1; and player 2 gains by choosing ` in (R; r) ; 0 > �1:
Yet in �, the equilibrium (L; r) is much less convincing than (R; `): In (L; r) ; player

2 intends to choose r which� if he were to choose at all� would be less favorable than `;

0 > �1: Then, of course, player 1 prefers L which is the best of all worlds for player 2;
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Figure 1.4. Two extensive games

` r

L 1; 1 1; 1

R 2; 0 �1;�1

Figure 1.5. The normal form NF(�) = NF(��)

i.e., which gives him the highest possible payo¤, 1: Usually, this is paraphrased by saying

that (L; r) rests upon an incredible threat or that (L; r) involves irrational behavior at

unreached information sets. If player 1 chooses L; then player 2�s information set is not

reached. In this case, the decision of player 2 does not a¤ect the outcome. Hence, he is

indi¤erent between his actions and thus may plan to take the �bad�action r.

In order to preclude sequentially irrational behavior as incredible threats, several so-

called re�nements of Nash equilibrium have been introduced, both for extensive games

and for strategic games. The most basic re�nement for extensive games is subgame perfect

equilibrium (SPE) which� as its name suggests� involves substructures of extensive games

called subgames, formally de�ned in Section II.2.2 (pp. 29). Roughly speaking, a subgame

is a part of a game which is strategically independent of the rest of the game, i.e., the

choices outside the subgame do not interfere with the choices inside. Any extensive game

is a (trivial) subgame of itself because there is no outside. All other subgames are called

proper. More precisely, a subgame consists of some node and all of its successors, and it

inherits the structure of the original game on this node set. Once more, this is illustrated

by an example. Intuitively, it is clear that the game � in Figure 1.4 has one proper

subgame, namely, the one starting at the unique decision node of player 2: This subgame
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consists of three nodes, player 2�s decision node which is the unique decision node and the

two terminal nodes z3 and z4:

A SPE is a strategy pro�le which induces equilibria in any subgame. Since this includes

the whole game, any SPE also is an equilibrium, i.e., SPE re�nes the Nash equilibrium

concept. In �; there are two candidates for a SPE, (L; r) and (R; `) ; the equilibria of �

itself. Yet, in the only non-trivial subgame as identi�ed above, just player 2 has to make a

decision, to choose r or `: Since ` gives the higher payo¤, 0 > �1, choosing ` is the unique
equilibrium in this subgame. Hence, (R; `) is the unique SPE in �: This shows that SPE

may indeed sort out sequentially irrational behavior as incredible threats, for example.

In more complex games exhibiting incomplete information, SPE may be much less

useful. For example, the game �� in Figure 1.4 has no proper subgame implying that any

equilibrium is a SPE. Since �� has the same normal form as �; (L; r) is an equilibrium

of �� which is not discarded by SPE. However, (L; r) is implausible in ��� if player 2 is

slightly uncertain that player 1 chooses L; then he prefers action `: In order to avoid such

equilibria, more powerful equilibrium concepts have been introduced, perfect equilibrium

(Selten 1975) , sequential equilibrium (Kreps & Wilson 1982) , de�ned in the proof of

Theorems II.5.2 (pp. 46) or III.3.7 (pp. 60), or quasi-perfect equilibrium (van Damme 1984)

, de�ned in Remark IV.3.7 (pp. 67).

In general, the standard form contains much less information than the underlying ex-

tensive game. In a sense, an extensive game can be viewed as an extension of the derived

strategic games, the normal form, the agent normal form, and the standard form. Two

interesting questions arise. Do these derivatives comprise all of the strategically relevant

information contained in an extensive game, for example, the information required to de-

termine equilibria of some kind? How can this strategically relevant part be characterized?

The papers in Part 1 attempt to answer these questions.

1.2. TU games, coalition structures, and cooperation structures. Again, the
concept of a coalitional game with transferable utility (TU game), formally de�ned in

Section V.2 (pp. 75), is best understood by an example. We consider an entrepreneur,

E, who owns the capital, and two workers, W1 and W2. Neither the entrepreneur alone

nor one or both of the workers alone are productive. If the entrepreneur and worker 1

cooperate, they can produce a net gain of $3. Worker 2 is less productive; together with

the entrepreneur, a net gain of $2 can be achieved. If all of them cooperate, they can

create a net gain of $6:

Such a situation can be modelled by a TU game (N; v) as follows. There is a player

set N = fE;W1;W2g which contains the �names�of all players. The coalition function v
assigns a worth v (S) to any coalition S (subset of N) where the empty coalition ; obtains
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a zero worth, v (;) = 0: In our example, we have

v (S) =

8>>>>><>>>>>:
0; jSj � 1 or S = fW1;W2g ;
2; S = fE;W2g ;
3; S = fE;W1g ;
6; S = N:

Imagine two constellations: (A) The entrepreneur E employs the more productive

worker W1 while worker W2 remains unemployed. Then, E and W1 create a worth of

v (fE;W1g) = 3 and W2 creates v (fW2g) = 0: (B) Both workers are employed, i.e., a

worth of v (N) = 6 is produced, but they are organized within a trade union. It is clear

that such constellations transcend the structural features embodied in TU games.

In order to model these circumstances, TU games are enriched by so-called coalition

structures, i.e., partitions of the player set N; formally introduced in Section V.2 (pp. 75).

The so-called components of a partition exhaust the player set and are mutually disjoint,

i.e., any player is a member of exactly one component. Constellation (A) corresponds to

the coalition structure

P = ffE;W1g ; fW2gg :
The cooperating players E and W1 are gathered in one component, fE;W1g ; while the
excluded player W2 forms a singleton component, fW2g : Similarly, constellation (B) is
re�ected by the coalition structure

B = ffEg ; fW1;W2gg :

In a sense, the component fW1;W2g stands for the trade union, which E is not a member
of.

Obviously, the coalition structures P and B have di¤erent interpretations. The com-
ponents in P are productive units, i.e., the players in any component P 2 P pool their

resources and cooperate in order to create the worth v (P ), excluding outsiders from doing

so. In contrast, the components of B 2 B can best be viewed as bargaining blocs within
the grand coalition N : All players cooperate in the production of worth, i.e., the worth

v (N) is created, but they form alliances in order to strengthen (hopefully) their position

in bargaining on the distribution of that worth.

Finally, consider a third constellation (C). Now, worker W2 is unproductive, i.e.,

concerning the net gain, it does not matter whether W2 is present or not. This can be

modelled by the coalition function w as follows:

w (S) =

8<: 0; jSj � 1 or S = fW1;W2g or S = fE;W2g ;
3; S = fE;W1g or S = N:

(1.1)
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Further, the entrepreneur E and the productive worker W1 can cooperate only because

they communicate via worker W2 or because both of them have bilateral cooperation

agreements with player W2 but not with each other. In both cases, E and W1 need W2

in order to cooperate and to produce the worth of w (fE;W1g), even though workerW2 is
not productive, i.e., w (fE;W1g) = w (N). Again, this constellation transcends the world

of TU games, even if they are enriched by coalition structures.

In order to model such circumstances, TU games are extended by so-called cooperation

structures, i.e., undirected graphs on the player set N; formally de�ned in Section VI.2

(pp. 91). Remember, an undirected graph on a set N consists of a set of links which

connect di¤erent players. Constellation (C) can be modelled by the following graph:

E

� � �

W2

� � �

W1

�
(1.2)

The link set L consists of the links fE;W2g and fW1;W2g which stand for communication
channels or bilateral agreements that enable cooperation. Players who are not connected

via (a chain of) links cannot cooperate, neither can they create worth together nor can

they bargain together.

So far, again, we represented aspects of real-life situations as games and additional

structures. In particular, we know what any coalition can achieve if its members cooperate

and, possibly, we know which players actually do so. Now, one certainly would like to have

some predictions on the single players�proceeds, i.e., one would like to have some device to

determine them. One such device are values which assign to every player a unique payo¤.

The best-known and widely employed such value for TU games is the Shapley (1953)

value which also is the point of departure of a number of value concepts for TU games with

additional structures. The intuition behind his value is the following: Suppose the players

enter a room in some order. Each player is payed the di¤erence of worth of the coalition

in the room after he entered the room and before he did so, which is called his marginal

contribution under the order under consideration, formally de�ned in Section V.2 (pp. 75).

The Shapley value, Sh, formally de�ned in Section V.2 (pp. 75), assigns the average of

these marginal contributions over all orderings. This is illustrated with our example.
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MC�E 0 0 3 6 2 6 17
6

MC�W1 3 4 0 0 4 0 11
6

MC�W2 3 2 3 0 0 0 8
6

Table 1.1. Marginal contributions and Shapley payo¤s

Consider the order � = [E;W1;W2] where the left player is the �rst one and the right

player the last one. The marginal contributions MC (�) are given as follows:

MC�E (�) = v (fEg)� v (;) = 0� 0 = 0

MC�W1 (�) = v (fE;W1g)� v (fEg) = 3� 0 = 3

MC�W2 (�) = v (fE;W1;W2g)� v (fE;W1g) = 6� 3 = 3

In a similar fashion, one easily calculates the marginal contributions for the remaining �ve

orders. Table 1.1 lists the results, where the orders are to be read top-down. Averaging

over all orders �nally yields the Shapley payo¤s listed in the last column.

One easily checks that the Shapley value is e¢ cient, i.e., the players�payo¤s add up

to the worth of the grand coalition v (N) = 6: This corresponds to the interpretation of

a value as modelling production and bargaining on the distribution of worth in the grand

coalition.

Departing from the Shapley value, there is a number of values that apply to situations

where production or bargaining is restricted by some structure on the player set. In the

following, we brie�y illustrate three such concepts by examples: the Aumann & Drèze

(1974) value (henceforth AD-value), the Owen (1977) value, and the Myerson (1977)

value. The �rst two apply to coalition structures (CS-values) and the last one to coop-

eration structures (CO-value). While the second value is e¢ cient, the other two values

are component e¢ cient, i.e., under these values, the players of a component obtain the

component�s worth.

The idea of the AD-value, formally de�ned in Section VI.2 (pp. 92), is to apply the

Shapley value to the restriction of the original TU game to the single components of

the coalition structure. Reconsider the TU game (N; v) and the coalition structure P
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above. The coalition structure P contains two components, fE;W1g and fW2g : The game
restricted to fW2g contains the player W2 only who is assigned the payo¤ v (fW2g) = 0
by component e¢ ciency of the AD-value. In the game restricted to fE;W1g ; the players
are symmetric which here means that they create the same worth when they stand alone.

Together with component e¢ ciency, this implies that the Shapley value splits the worth

of v (fE;W1g) = 3 equally between them. Altogether, we thus have

ADE (N; v;P) = ADW1 (N; v;P) =
3

2
; and ADW2 (N; v;P) = 0:

Indeed, E and W1 together earn v (fE;W1g) = 3 and W2 earns v (fW2g) = 0: In

(N; v;P), the equal split between E and W1 indicates that the AD-value considers the

components of P to be �islands�which do not interact with the other ones.
The Owen value, Ow, formally de�ned in Section VII.2 (pp. 111), results from another

kind of restriction of the Shapley value. Remember, the Shapley payo¤s are calculated as

the average of the marginal contributions over all orderings of players. Instead, the Owen

value just considers those orders where the players within a component are kept together,

i.e. in terms of our visualization, the players of a component immediately follow each other

when they arrive at the �room�evoked above.

In our example, there are six orders indicated in Table 1.1. But only four of them are

compatible with B; [E;W1;W2], [E;W2;W1], [W1;W2; E] ; and [W2;W1; E] : The order
[W1;W2; E] ; for example, does not respect B� E and W1 inhabit the same component

but are separated by W2: Averaging the marginal contributions from Table 1.1 over the

orders compatible with B gives

OwE (N; v;B) = 3; OwW1 (N; v;B) =
7

4
; and OwW2 (N; v;B) =

5

4
:

Compared with unrestricted bargaining modelled by the Shapley value, player E gains

while W1 and W2 loose. This seems to be quite plausible: Under B; the workers loose
�exibility in bargaining which hurts because their marginal contributions increase with

the coalition size.

We now turn to the Myerson value, �, formally de�ned in Section VI.2 (pp. 92). In a

sense, � also results from some kind of restriction concerning the Shapley value. Roughly

speaking, the ability of the players to cooperate productively is restricted by their ability

to communicate via links. Players who are connected via a chain of links can cooperate

while player who are separated cannot. This induces a graph restricted version of the

original coalition function.

We explain this with constellation (C) of our example above. One obtains the graph

restricted payo¤ function wL from w in (1.1) as follows: It is easy to see from the graph

L in (1.2) that all coalitions� with exception of coalition fE;W1g� are connected by
internal links. For example, coalition fE;W2g is connected via the link fE;W2g which
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runs completely within fE;W2g : Also, the players in N are connected: E and W2 as

well as W1 and W2 are linked directly while E and W1 are connected via the chain

of links (fE;W2g ; fW2;W1g): Of course, all these links run within N: Since the chain
(fE;W2g ; fW2;W1g) does not run entirely within the coalition fE;W1g, E and W1 are

not connected internally. Hence, the players in all coalitions, except of fE;W1g ; can
cooperate. We set wL (S) = w (S) if S 6= fE;W1g and wL (fE;W1g) = w (fEg) +
w (fW1g) ; i.e. we have

wL (S) =

8<: 0; jSj � 2;
3; S = N:

(1.3)

The Myerson payo¤s of (N; v; L) are the Shapley payo¤s for
�
N; vL

�
: Calculations as in

Table 1.1 yield

�E (N; v; L) = �W1 (N; v; L) = �W2 (N; v; L) = 1;

i.e., the grand coalition�s worth v (N) = 3 is split equally. Since all players are needed in

order to create a non-zero worth, this result is quite intuitive.

The AD-value and the Myerson value share one de�ciency: They do not account for

outside options, i.e., the players�productive and linking potential outside their own com-

ponent; in order to determine a player�s payo¤ one can restrict attention to his component.

Further, there is no e¢ cient value for games with a cooperation structure. The papers

in Part 2 attempt to overcome this de�ciency and to �ll the gap. Finally, the last paper

establishes a relation between two values for games with a cooperation structure.

2. Isomorphism of extensive games

In this section, we motivate the papers in Part 1 and indicate their main results where

the subsections refer to the single papers.

Roughly speaking, an isomorphism from one game to another is a bijective mapping of

the players�actions or strategies that respects those aspects of a game which are considered

to be relevant. This is explained with an example. Reconsider the games � and �� in Figure

1.4. Are these games isomorphic? Should we consider them to be so?

Obviously, the games are di¤erent. First, their game trees di¤er concerning the number

of nodes and edges. Less technically, � exhibits complete information, while in ��, player

2 does not know which action player 1 has chosen. Nevertheless, both games have much

in common: There are two players who both have two actions. Even stronger, the games

share the same standard form depicted in Figure 1.5. Hence, the identity mapping on

the actions establishes an isomorphism of the standard forms (henceforth SFI), formally

de�ned in Section IV.2 (pp. 64), i.e., the games are standard-form isomorphic. Yet, as we

have already seen in Section 1.1 (pp. 6), the strategy pro�le (L; r) is a SPE in ��; but it is

not so in �: So, one could argue that the structural features re�ected by SFI, in general,
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t f

T 3; 1 0; 0

F 0; 0 1; 3

Figure 2.1. The battle-of-the-sexes game G

do not su¢ ce to apply the sequential rationality considerations embodied in the concept

of subgame perfect equilibrium.

SPE shares this property with sequential equilibrium (henceforth SEQ) and quasi-

proper equilibrium (henceforth QPE). In contrast, the agent normal form already contains

the information needed to determine all perfect equilibria. Yet, perfect equilibrium shares

some major drawback with SEQ. Moreover, Mertens (1995) argues that QPE seems to

exhibit the right combination of desirable properties as for example re�ecting sequential

rationality considerations. Therefore, one might be interested in concepts of isomorphism

for extensive games under which QPE is invariant. As we have seen, such concepts have to

preserve structural features of extensive games beyond the standard form. The papers in

Part 1 answer this challenge by successively weakening the concept of strong isomorphism

(Elmes & Reny 1994, Peleg, Rosenmüller & Sudhölter 1999) .

2.1. Weak isomorphism of extensive games. This chapter has been published as
�André Casajus (2003): Weak isomorphism of extensive games, in: Mathematical Social

Sciences 46, 267�290�, henceforth CA03.

Consider the Battle-of-the-Sexes game G in Figure 2.1 where he chooses the row and

she chooses the column. The strategies F and f stand for going to a football match, and

T and t stand for going to the theatre. The payo¤s indicate that both prefer to be together

but even more prefer to be together at the favored event, he at the theatre and she at the

football match.

In a sense, the players and the strategies T and f on the one hand, and F and t on

the other hand are symmetric� one could interchange them without changing the game.

Traditionally, G is represented by the extensive games � or �� in Figure 2.2. So one could

argue that the players and the corresponding actions should also be symmetric in � and

in ��.

Peleg et al. (1999) (henceforth PRS) introduce strong isomorphisms of extensive

games that preserve the tree structure underlying the games. This implies that a strong

isomorphism cannot interchange the order of actions within a path from the root to a

terminal node. Hence, the identity mapping on actions does not constitute a strong

isomorphism from � to ��: For example, the left terminal of � is reached via the sequence
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Figure 2.3. The PRS representation �̂ of G

(T; t) of actions. Yet, there is no such terminal node in ��: Note, that the left terminal

node in �� is reached via (t; T ) ; i.e. the order of T and t is reversed. Analogously, a strong

isomorphism cannot interchange the players in � or in ��; i.e. the players are not symmetric

under strong isomorphism.

In order to resolve this peculiarity, Sudhölter, Rosenmüller & Peleg (2000) (also PRS)

introduce an alternative extensive representation for which both notions of symmetry

coincide. Figure 2.3 gives the PRS representation �̂ of G where ~o is a chance node with

the respective probabilities in brackets, he controls o; �x1, and �x2; and she controls �o; x1,

and x2: Obviously, the PRS representation is more complex and more di¢ cult to deal with

than the traditional one. So, a concept of isomorphism of extensive games that �ts the

traditional representation of strategic games seems to be desirable.
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To achieve this, we extend the Selten (1983) and Oh (1995) symmetries into weak

isomorphisms of extensive games. In contrast to strong isomorphism, we do not require

that the order of actions on a path from the root to a terminal is respected. What we

require is that the set of actions on a path is preserved. This way, the identity mapping on

actions constitutes a weak isomorphism. For example the set of actions fT; tg leading to
the left terminal node in � is mapped onto fT; tg which also is the set of actions leading to
the left terminal node in ��: Analogously for the other terminal nodes. Hence, as desired,

in � and in ��; the players are symmetric with respect to weak isomorphism.

Weak isomorphism may interchange the order of actions in a game tree. Hence, one

may wonder whether perfect equilibrium or sequential equilibrium are invariant under

weak isomorphism, i.e., whether equilibria of the same type are mapped onto each other.

Fortunately, this is the case.

Weak isomorphism exhibits another interesting property for games without chance

player and where all information sets have at least two actions. Even though the agent

normal form is less complex than the underlying extensive game, in generic cases, i.e.

almost always, extensive games are weakly isomorphic if and only if their agent normal

forms are isomorphic.

2.2. Super weak isomorphism of extensive games. This chapter has been published
as �André Casajus (2006): Super weak isomorphism of extensive games, in: Mathematical

Social Sciences 51, 107�116�, henceforth CA06.

This paper departs from two results of CA03: (i) Sequential equilibrium is invariant

under weak isomorphism. (ii) Weak isomorphism is generically equivalent to isomorphism

of the agent normal form for the games without chance player and where all information

sets have at least two actions. Now, one may wonder whether there is some relaxation of

weak isomorphism which is (a) equivalent to isomorphism of the agent normal form for

a larger class of games, but (b) such that sequential equilibrium remains invariant under

this relaxation of weak isomorphism. Since the agent normal form does not contain any

information on the chance mechanism besides its e¤ect on the payo¤s, such a relaxation

would have to ignore the structure and the embedding of the chance mechanism which are

preserved by weak isomorphism to a large extent.

We relax weak isomorphism into a concept called super weak isomorphism, basically

by dropping its requirements related to the structure and the embedding of the chance

mechanism. Since all paths to a terminal node in �̂ in Figure 2.3 contain one chance

node, the game � in Figure 2.2 cannot be weakly isomorphic to its PRS representation �̂.

Since super weak isomorphism neglects chance actions, the identity mapping on actions

establishes such an isomorphism from � to �̂: The set fT; tg of non-chance actions leading
to the left terminal node in � is mapped onto the set fT; tg in �̂ which actually is the
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set of non-chance actions leading to the left terminal node and to the fourth from right

terminal node in �̂: Analogously for the other terminal nodes.

It turns out that perfect equilibrium and sequential equilibrium remain invariant under

super weak isomorphism. However, super weak isomorphism and isomorphism of the agent

normal form do not coincide generically on the class of games where all information sets

have at least two actions, i.e., there are great many cases where both concepts diverge.

At least, some progress is made in this respect. There is a (small) class of games with a

chance mechanism for which equivalence in the above sense holds. For example, the game

�̂ is contained in this class.

2.3. Strong agent normal form isomorphism. This paper takes up the question
concluding CA06 whether super weak isomorphism can be further relaxed towards generic

equivalence to isomorphism of the agent normal form without loosing the invariance of

sequential equilibrium.

As an answer, we introduce the concept of strong agent normal form isomorphism

which strengthens isomorphism of the agent normal form. The point of departure is the

following observation. Though the games � and �� in Figure 1.4 have the same (agent)

normal form (Figure 1.5), they have di¤erent sets of sequential equilibria. While the

strategy pro�le (L; r) is a sequential equilibrium in ��, it is not so in �: Yet, the coincidence

of the agent normal forms of � and �� crucially rests upon the fact that two of the terminal

nodes in ��; �z1 and �z2; are assigned the same payo¤s. Under slight perturbations of these

payo¤s, � and �� no longer have the same/isomorphic agent normal form.

This gives rise to our notion of a strong agent normal form isomorphism. Basically,

a strong agent normal form isomorphism is an agent normal form isomorphism which

remains an agent normal form isomorphism under (slight) perturbations of payo¤s. Note

that, since payo¤ are assigned to terminal nodes, strong agent normal form isomorphism

is a genuine extensive form concept.

It turns out that strong agent normal form isomorphism does its intended job: While

being generically equivalent to its weaker cousin, sequential, perfect, and quasi-perfect

equilibrium remain invariant. Moreover, super weak isomorphism and strong agent normal

form isomorphism do not coincide generically, i.e., there are great many cases where they

diverge.

3. Outside options and communication restrictions in TU games

In this section, we motivate the papers in Part 2 and indicate their main results where

the subsections refer to the single papers.
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AD-value

Owen value
Wiese value Shapley value �-value core

left with right : 5000 : 7167 : 7333 : 8000 1

right with left : 5000 : 2833 : 1333 : 2000 0

single right 0 0 : 1333 0 0

Table 3.1. Payo¤s for the gloves game

3.1. Outside options, component e¢ ciency, and stability. This chapter has been
published �André Casajus (2009): Outside options, component e¢ ciency, and stability,

in: Games and Economic Behavior 65 (1), 49�61�.

Consider a gloves game (Shapley & Shubik 1969) with two left-glove holders and

four right-glove holders where the worth of a coalition is the number of matching pairs

it contains. Further, let there be two matching-pair coalitions whereas the remaining

right-glove holders stand alone. This situation corresponds to a TU game with the player

set N = R [ L; where the sets R := fR1; R2; R3; R4g and L := fL1; L2g represent the
right-glove holders and the left-glove holders, respectively. The coalition function v and

the coalition structure P are given by

v (K) = min fjK \Rj ; jK \ Ljg ; K � N

and

P = ffR1; L1g ; fR2; L2g ; fR3g ; fR3gg :

How should the players in a matching-pair coalition split the worth of 1? In order to

answer such questions, several values for TU games with a given coalition structure have

been introduced. Table 3.1 lists their payo¤s. Interestingly, both the AD-value and the

Owen value split the worth of 1 equally between the members of a matching-pair coalition.

I.e., these values are insensitive to outside options which in the present context means that

they do not respond to the relative scarcity of the left gloves.

In contrast to the AD- and the Owen value, the unique core payo¤s give the whole

worth of 1 to the left-glove holders. I.e., the core neglects the productive role of a right-

glove holder within a given matching-pair coalition. Only recently, Wiese (2007) suggested

another component e¢ cient CS-value which steers a course between these extreme posi-

tions. This can be seen from the Wiese payo¤s listed in Table 3.1. On the one hand, the

payo¤ of a left-glove holder is higher than that of the right-glove holder in his coalition�

the Wiese value accounts for outside options. On the other hand, a right-glove holder
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in a matching-pair coalition obtains a higher payo¤ than the single right-glove holders�

the Wiese value recognizes the productive role of right-glove holders in the matching-pair

coalitions.

Nevertheless, the Wiese value has some drawbacks. Most notably, it lacks a �nice�

axiomatization. In essence, there is a not too intuitive ad-hoc speci�cation of the payo¤s

for unanimity games which is expanded by linearity to the whole class of games. Further,

it is not yet clear whether there are stable coalition structures (in the sense of Hart &

Kurz 1983) with respect to the Wiese value for all TU games.

In order to remedy these de�ciencies, we introduce a component e¢ cient CS-value�

the �-value. The main idea underlying the �-value is that splitting a structural coalition

a¤ects players who remain together in the same component in the same way. Together with

some other axioms, this property characterizes the �-value which easily can be computed

from the Shapley value. Further, it turns out that stable coalition structures with respect

to the �-value exist for all TU games. The �-payo¤s for our example in Table 3.1 indicate

that the �-value balances outside options and the contribution to ones own coalition.

3.2. Outside options in TU games with a cooperation structure. A revised ver-
sion of this chapter has been published as �André Casajus (2009): Networks and outside

options, in: Social Choice and Welfare 32 (1), 1�13�.

One right-glove holder, R; and one left-glove holder, `; actually sell their pair of gloves

which is worth 1 via some agent A1: How should R, `, and A1 split the proceeds? Would

this split change if there were a second agent A2? In order to answer this kind of questions,

one can employ the Myerson value.

Our example corresponds to a TU game with 3 (or 4) players, R, `, A1; (and A2),

where the worth of a coalition is 1 if it contains a matching pair, i.e. the players R and `;

and is 0 if it does not so. The fact that R and ` sell their pair via A1 can be modelled by

the following graphs:

R

� � �

A1

� � �

`

�
(3.1)

R

� � �

A1

� � �

`

�
A2

�
(3.2)

In both cases, the Myerson value � assigns the same payo¤s to R; `; and A1; �R = �` =

�A1 =
1
3 : Though A1 is not productive, he obtains a positive payo¤ for his intermediation.
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Yet, a bit unintuitively, the share of A1 is not a¤ected by the presence of the potential

competitor A2: Thus, the Myerson value does not account for the outside option of R and

` to sell their pair of gloves via A2. Once more we emphasize the importance of outside

options.

The Myerson value shares this neglect of outside options with the AD-value. In order

to remedy this peculiarity of the AD-value, Wiese (2007) and Casajus (2009)1 introduce

the outside-option value and the �-value, respectively. Hence, it seems to be worthwhile

to look for a CO-value which generalizes these concepts.

As an attempt, we introduce and axiomatize the �graph-�-value�, �#; which extends

the �-value to CO-games and thus accounts for outside options. To achieve this, we restrict

the crucial axiom of the original characterization of the Myerson value, the fairness axiom,

to situations without outside options or where outside options are not a¤ected. An outside-

option consistency axiom determines how players within the same component assess their

outside options and restores the uniqueness lost by relaxing the fairness axiom. It turns

out that the �#-value generalizes the �-value� if all possible links within the components

are present, then the �]-value and the �-value coincide. For our example, we obtain the

following payo¤s: If A2 is not present, then the payo¤s are as for the Myerson value. But

in presence of A2; the payo¤ of A1 decreases. In particular, we have �#R = �#` =
4
9 and

�#A1 =
1
9 which shows that the �

#-value rewards outside options without neglecting the

role of player A1 as intermediary.

Further, we explore some properties of this CO-value. In particular, we further clarify

its relation to the �-value and demonstrate the di¤erence to the Myerson value concerning

stability issues.

3.3. An e¢ cient value for TU games with a cooperation structure. This chapter
was submitted for publication in the International Journal of Game Theory in September

2006 and resubmitted in October 2007.

Consider the TU game with the player set N = fP1; P2; P3; Ag and the coalition
function given by

v (K) =

8<: 1 ; jK \ fP1; P2; P3gj > 1;
0 ; jK \ fP1; P2; P3gj � 1;

;K � N:

A is not productive and the presence of any two of the productive players P1; P2; and

P3 already su¢ ces to produce the worth of 1: Suppose all these players cooperate in

order to create the grand coalition�s worth of v (N) = 1. If the players do not form any

coalitions when bargaining on the distribution of v (N) ; then, for symmetry reasons, one

would expect an equal split between the three productive players. Would/should this

1Also Chapter V of this thesis.
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split change if P1 and P2 formed a bargaining bloc? What if these players need the

unproductive A in order to form this bloc?

The �rst type of questions is answered by the Owen value which assigns the payo¤
1
2 to P1 and to P2 while P3 and A get nothing. Since the players P1 and P2 already

produce the grand coalition�s worth and since they bargain as one person as well as for

symmetry reasons, this �ts nicely with our intuitions.

Yet, the Owen value cannot give an adequate answer to the second type of questions.

If P1 and P2 need A in order to form a bargaining bloc, then one may argue that�

despite being not productive� A should obtain a positive payo¤. However, adding A to

the bloc formed by P1 and P2 does not a¤ect the Owen payo¤s. One reason for this is

that coalition structures are too coarse structures. From the coalition fP1; P2; Ag alone
one cannot infer whether A is necessary to connect the productive players P1 and P2 or

not. The necessity of A can be modelled by the undirected graph

P1

� � �

A

� � �

P2

�
P3

�
(3.3)

where P1 and P2 are connected only via a chain of links involving A: Yet, this transcends

the world of coalition structures and leads into the realm of cooperation structures.

Hence, one would like to have an e¢ cient CO-value which recognizes, for example,

the coordinating role of player A in the situation above. As an attempt, we introduce

and axiomatize a CO-value that generalizes the Owen value to the class of CO-games and

which, in a sense, does not deviate too much from the Myerson value. More speci�cally,

our CO-value coincides with the Owen value if all possible links within the components

are present and it coincides with the Myerson value if there is just one component. For the

graph (3.3) in our example, that CO-value assigns the payo¤s 'P1 = 'P2 =
5
12 ; 'A =

1
6 ,

and 'P3 = 0 which meet our intuitions concerning player A:

The axiomatization involves four axioms. Besides e¢ ciency, we require our CO-value

to assign the same payo¤s for the complete graph as for the empty graph which, in fact,

represents some mild version of the requirement to treat similar players in a similar way.

Further, the internal organization of the components should not a¤ect the components�

payo¤s. Finally, we modify the crucial axiom of the original characterization of the Myer-

son value, the fairness axiom, such that the number of components involved is not a¤ected

by removing a link. Though, the player set involved may shrink. Further, we explore the

relation of our CO-value to the Myerson value and to the Owen value as well as consistency

properties. Finally, we touch stability issues.
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3.4. On a relation between the Myerson value and the position value. An ex-
tended version of this chapter has been published as �André Casajus (2007): The position

value ist the Myerson value, in a sense, in: International Journal of Game Theory 36 (1),

47-55�.

The Myerson value is calculated as the Shapley value for the original player set and

the graph-restricted payo¤ function (see Section 1.2, pp. 11). Hence, the Myerson value

emphasizes the role of the players in creating cooperation structures.

As an alternative to the Myerson value, Meessen (1988) suggests the position value,

�; which was popularized by Borm, Owen & Tijs (1992) . Only recently, Slikker (2005)

gave a general characterization. In contrast to the Myerson value, the focus of the position

value is on the links. It is calculated in two steps.

First, the payo¤s of the links are determined as the Shapley payo¤s in the so-called link

game where the player set is the set of links and the payo¤ of any subset of links is given

by the sum of the worths of the components induced by that subset of links. Reconsider

constellation (C) in Section 1.2 which was represented by the player set fE;W1;W2g ; the
coalition function w in (1.1), and the cooperation structure in (1.2). In the link game, we

have the player set L = ffE;W2g ; fW1;W2gg: The coalition function wN is given by

wN (S) =

8<: 0; S 6= L;

3; S = L:
(3.4)

This can be seen as follows: If S does not contain both links, N splits into components the

worth of which is 0; otherwise there is one component containing all players whose worth

is v (N) = 3: The Shapley payo¤s for
�
L; vN

�
are ShfE;W2g = ShfW1;W2g =

3
2 ; i.e., the

grand coalition�s worth is split equally among the links. In the second step, every player

obtains half of the payo¤s of his links. This yields the position value payo¤s

�E (N;w;L) = �W1 (N;w;L) =
3

4
and �W2 (N;w;L) =

3

2

which illustrates the position value�s focus on the links. Though all players are indispens-

able to create a positive worth, player W2�s central position with more links secures a

payo¤ higher than that of the other players.

We suggest another way to determine the position value. In particular, we split the

players into separate agents, one for each link, and directly connect any two of a player�s

agents. Further, any of a player�s link agents can play his productive role, but one of

them su¢ ces to do so. Based on this idea, we introduce the link agent form (LAF) of a

CO-game. It turns out that the sum of the Myerson payo¤s of a player�s agents in the

LAF equals his position value payo¤s in the original game. We extend this construction

to TU games with a conference structure and obtain an analogous the result.
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In our example above, player W2 has two links. Hence in the link agent form, W2 is

split into two link agents, W2:E andW2:W1; and these agents are linked with each other.

The link agent form consists of the player set M = fE;W1;W2:E;W2:W1g, the payo¤
function u;

u (S) =

8<: 0; S 6=M;

3; S =M;

and of the cooperation structure

E

� � �

W2:E

� � �

W2:W1

� � �

W1

�

which gives the Myerson payo¤s �E = �W2:E = �W2:W1 = �W1 =
3
4 : Summing up over a

player�s link agents yields the position value payo¤s as above.

4. Technicalities

The papers in this thesis appear in the form they have been published or (re)submitted.

In particular, there is an abstract and a separate bibliography for any of these. Within the

published papers, margin notes indicate the original page numbers. Except for the heading

line, the chapter number is suppressed within a chapter; references within the same chapter

appear without chapter number. In the index, italicized page numbers indicate where a

concept is de�ned.
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Isomorphism of extensive games



CHAPTER II

Weak isomorphism of extensive games

This Chapter has been published as �André Casajus (2003): Weak isomorphism of ex-

tensive games, in: Mathematical Social Sciences 46, 267�290�. The margin notes indicate

the �rst lines of the respective pages in the published version.

An early version appeared as �André Casajus (2000): Weak isomorphism of extensive

games, Diskussionsbeitrag 185/2000, Institut für Volkswirtschaftslehre, Universität Ho-

henheim, Germany� and was presented in a poster session at the First World Congress

of the Game Theory Society (Games 2000, July 24�28, 2000, Bilbao, Spain). Moreover,

it is based on Chapter 3 of my doctoral dissertation at the University of Leipzig, Ger-

many published as �André Casajus (2001): Focal Points in Framed Games: Breaking the

Symmetry, Vol. 499 of Lecture Notes in Economics and Mathematical Systems, Springer,

Berlin�.

The reasons for putting this paper into this thesis are the following: Sections 4.1, 4.2,

and 4.4 contain new results which triggered the research underlying Chapters III and IV.

Further, Chapters III and IV are addenda to this paper which rely on its basic de�nitions

and notation.

Abstract [267]

Based on the Selten (1983) and Oh (1995) symmetries, we introduce weak isomor-

phism of extensive games that, in contrast to the Peleg et al. (1999) isomorphism, is

compatible with the traditional extensive representation of strategic games. While

being su¢ ciently �weak� to ignore the order of moves to some extent, weak iso-

morphism is �strong� enough not to violate sequential rationality considerations

as incorporated in the concept of sequential equilibrium. In addition, there is some

generic equivalence between weak isomorphism and isomorphism of the agent normal

form.

Key Words: Symmetry, Representation, Equivalence, Transformation, Sequential

rationality

JEL classi�cation: C72.
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1. Introduction

Intuitively, within the Battle-of-the-Sexes game G

s21 s22

s11 3; 1 0; 0

s12 0; 0 1; 3

the players and their strategies s11 and s22 as well as s12 and s21 are symmetric. Har- [268]

sanyi & Selten (1988) formalize this intuition with their isomorphism of strategic games.

Traditionally, G is represented by the extensive game � or �� in Figure 1 (information

sets henceforth indicated by dashed lines). So one could argue that the players and the

corresponding actions should also be symmetric in � and ��.

�
1

� �

�
z1

(3; 1)

�
z2

(0; 0)

�
z3

(0; 0)

�
z4

(1; 3)

...............................................................................................................................................

s11

...............................................................................................................................................

s12

................................................................................................................................

s21

..........................................................................................................................

s22

..........................................................................................................................

s21

................................................................................................................................

s22

........................................................................................... 2

�

�
2

� �

�
z1

(3; 1)

�
z2

(0; 0)

�
z3

(0; 0)

�
z4

(1; 3)

...............................................................................................................................................

s21

...............................................................................................................................................

s22

................................................................................................................................

s11

..........................................................................................................................

s12

..........................................................................................................................

s11

................................................................................................................................

s12

........................................................................................... 1

��

Figure 1. Traditional extensive representations of G

Similar to Elmes & Reny (1994) (henceforth E&R), Peleg et al. (1999) (henceforth

PRS) introduce isomorphisms of extensive games that preserve the structure of extensive

games beyond purely strategical considerations. In particular, these isomorphisms preserve

the (strict) order of moves. Then, PRS observe that the induced symmetry of players in

the traditional extensive game representation is incompatible with their counterpart for

strategic games based on the Harsanyi & Selten (1988) isomorphism: Since the players

move in some order in �; they cannot be symmetric. In order to remedy this shortcom-

ing, Sudhölter et al. (2000) (also PRS) introduce and axiomatize an alternative extensive

representation for which both notions of symmetry coincide. Figure 2 gives the PRS rep-

resentation of G where ~o is a chance node with the respective probabilities in brackets,

player 1 controls o; �x1, and �x2; and player 2 controls �o; x1, and x2: Obviously, the PRS

representation is more complex and more di¢ cult to deal with than the traditional one.

So a concept of isomorphism of extensive games that �ts the traditional representation of

strategic games seems to be desirable.
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�
o

�
x1 �

x2

�
z1

(3; 1)

�
z2

(0; 0)

�
z3

(0; 0)

�
z4

(1; 3)

...............................................................................................................................................

s11

...............................................................................................................................................

s12

................................................................................................................................

s21

..........................................................................................................................

s22

..........................................................................................................................

s21

................................................................................................................................

s22

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............
............. .............

............. ....
......... .....
........ ...
..........
.............
.............
.............
.............
........................ ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ...........

�
~o

......................................................................................................................................................................................................................................

�
1
2
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�
1
2

�
�
�o

�
�x1 �

�x2

�
�z1

(3; 1)

�
�z2

(0; 0)

�
�z3

(0; 0)

�
�z4

(1; 3)

...............................................................................................................................................

s21

...............................................................................................................................................

s22

................................................................................................................................

s11

..........................................................................................................................

s12

..........................................................................................................................

s11

................................................................................................................................

s12

Figure 2. The PRS representation of G

While it is clear that these isomorphisms cannot respect the order of moves in the [269]

strong sense of E&R and PRS, we cannot dispense with them preserving the �essential�

part of the order of moves. This poses the delicate question what this essence is. With-

out trying to give a comprehensive answer, the following property seems to be necessary

for such an essential order preservation: All �reasonable�equilibrium concepts� especially

equilibrium concepts that explicitly refer to the sequential nature of moves as the subgame

perfect equilibrium (Selten 1975) or the sequential equilibrium (Kreps & Wilson 1982)

should be invariant with respect to this isomorphism, i.e. equilibria of the types under

consideration should be mapped onto each other, respectively. Note that this criterion

reverses the relation between equilibrium concepts and invariance with respect to isomor-

phism: Usually, this invariance serves as a requirement on solution concepts. Here, in

contrast, solution concepts are exploited to assess isomorphism. Of course, this reversal

should be founded on some agreement that the equilibrium concepts used are sound in

some sense.

In view of the su¢ ciency of the normal form to preclude sequentially irrational behav-

ior as �incredible threats� (Kohlberg & Mertens 1986) and that extensive games can be

transformed into their reduced normal form by strategically �inessential�transformations

(E&R), one might question the need for preserving structural features beyond the nor-

mal form. However, it is not yet clear whether the (reduced) normal form contains all of

the strategically relevant information (see Fudenberg & Tirole 1991, ch. 11). In addition,

strategically irrelevant features may trigger the focal point e¤ect (Schelling 1960).

The latter is explained with some examples: Consider the following two-player one-

shot matching game� both players independently have to name one of the numbers �1�,

�2�, or �3�, and both get a prize only if they choose the same one: Then, symmetry

invariance prescribes them to randomize over the numbers leading to a probability of one
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third of winning the prize. Consider now a modi�cation of this game: If the players

coordinate at �1�, then they win a lottery that gives them a bigger prize with probability
1
2 and otherwise nothing; and the players are indi¤erent between this lottery and the

original prize. From a purely strategic point of view, both games are equivalent. However,

the lottery makes the �1� focal, and the players can coordinate for sure by naming the

�1�. Hence, the structure of the chance mechanism itself may create a focal point. In

addition, actions, even strategically irrelevant ones, may bear labels that constitute a

focal point: Let the game above lead to identical lotteries in case of coordination. Again,

symmetry invariance then prescribes uniform randomization. From a strategic point of

view these lotteries could be replaced by their expected payo¤s. But if the lottery resulting

from coordinating at �1� is e¤ected, say, by a Wheel of Fortune which is colored black

while the others are e¤ected by a red one, naming the �1� is focal. Of course, deriving

this focal point requires some formal labelling of information sets or� more general� of

actions and some solution concept that exploits this labelling. In our example, chance

actions could be assigned labels that indicate the color of the Wheel of Fortune. Hence,

a concept of isomorphism that keeps much of the structure of extensive games would be

a good candidate for transferring the framed strategic games approach of focal points to

extensive games (see Casajus 2001, ch. 4). Note that this approach is restricted to focal

points as symmetry breaking devices. Indeed, it cannot discriminate between the two [270]

pure-strategy equilibria in the Battle-of-the-Sexes game.

The plan of the paper is as follows: Basic de�nitions and notation are given in the next

section. The third one extends the Selten (1983) and Oh (1995) symmetries into weak

isomorphisms of extensive games. Particularly, we discus the path condition which makes

these isomorphisms �weak�. It is shown that� in non-pathological cases� this condition

cannot be weakened without loosing too much of the games�structure (Theorem 3.5). In

the fourth section, we explore the relation between weak isomorphism and other concepts

of equivalence of extensive games� the Oh history preservation, (reduced) normal form

equivalence, E&R transformations, and agent normal form equivalence. Interestingly, we

can show the generic equivalence of weak isomorphism and agent normal form isomor-

phism for the class of non-pathological games without chance player (Theorem 4.8). We

also establish the desired equivalence of strategy symmetry in strategic games and their

traditional representation (Corollary 4.6). The invariance of equilibria under weak iso-

morphism and the existence of symmetry invariant equilibria is shown in the �fth section

(especially Theorem 5.2). The �nal section makes some concluding remarks. All proofs

and some technical lemmas are referred to the appendix.
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2. Basic de�nitions and notation

2.1. Strategic games. We consider the class G of �nite strategic games where the con-
stituents of G = (I; (Si)i2I ; (ui)i2I) 2 G are de�ned as usual: I is the non-empty and
�nite set of players, Si the non-empty and �nite set of player i�s pure strategies si, and

ui player i�s payo¤ function ui : S ! R where S :=
Q
i2I Si. �i denotes player i�s set of

mixed strategies �i; where �i(si) is the probability of si; and � :=
Q
i2I �i is the set of

mixed-strategy pro�les �:

An isomorphism (Harsanyi & Selten 1988) from G 2 G onto �G 2 G is a system of

bijective mappings f = (�; (ri)i2I), � : I ! �I; and ri : Si ! �S�(i); with the following

property: For all i 2 I; there are �i; �i 2 R; �i > 0 such that

�u�(i) (f (s)) = �iui (s) + �i (2.1)

for all s 2 S where f = (f�{)�{2�I : S ! �S; s 7! f(s) with

f�(i)(s) := ri(si) (2.2)

for all i 2 I and s 2 S. G and �G are called isomorphic (G �= �G) if there is an isomorphism

f from G onto �G (G f�! �G).

A solution concept L for G assigns a set of strategy pro�les L(G) � �� the solutions�
to any G 2 G. L is invariant with respect to isomorphism if for all G; �G 2 G and all isomor-
phisms G f�! �G we have f(L(G)) = L( �G) for f given by f where f : S ! �S is extended to

� by f�(i) (�) (ri(si)) := �i(si) for all i 2 I, si 2 Si; and � 2 �. Automorphisms are called [271]

symmetries. A strategy combination � is called symmetry invariant if f (�) = � for all f

given by symmetries of G. Players (strategies) are called symmetric if they are mapped

onto each other by some symmetry: By (2.2), symmetry-invariant strategy pro�les can be

characterized by symmetric strategies being assigned the same probabilities.

2.2. Extensive games. We consider the class E of �nite extensive games with perfect
recall, where the constituents of � = (T;C; I; P;H;A; p; u) 2 E are de�ned as usual (e.g.
Selten 1975):

The �nite node set T and the predecessor relation C constitute a game tree: T contains
at least two nodes; C is transitive and asymmetric; there is a root o 2 T such that o C
x for all x 6= o; and for all x; x0; x00 2 T; x0 C x, x00 C x and x0 6= x00 imply x0 C x00 or

x00 C x0; Z denotes the set of terminal nodes; X := TnZ denotes set of decision nodes.

V (x) denotes the unique immediate predecessor of x 6= o; and N(x) denotes the set of x�

immediate successors.

The player set I contains the personal players i and the chance player i0. For all i 2 I;
the player partition P divides X into player cells Pi where Pi0 may be empty; node x is

controlled by player i (x). The information partition H is a subpartition of P satisfying
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jN(x)j = jN(x0)j for all information sets h 2 H and x; x0 2 h; and h(x) = fxg for all x 2
Pi0 : Node x is contained in h(x), Hi := h(Pi) denotes the set of player i�s information sets,

and i (h) is the player who controls h: The action partition A divides Tn fog into actions
a, sets of nodes that are reached by the same act, such that V (a) 2 H and jaj = jV (a)j
for all a 2 A. Node x is contained in a(x); Ah := a(N(h)) denotes the actions at h; i.e.

a 2 AV (a); and Ai := a(N(Pi)) is the set of player i�s actions: The chance probabilities

are collected in p = fphjh 2 Hi0g where ph is a probability distribution over Ah such that
pV (a)(a) > 0 for all a 2 Ai0 : The payo¤ structure u := (ui)i2Infi0g contains the payo¤

function ui : Z ! R.

The subgame of � 2 G rooted in x 2 X is denoted �x = (T x;Cx; Ix; P x;Hx; Ax; px;

ux) 2 E where Cx is the restriction of C to T x, T x just contains x itself and all nodes

succeeding x, i.e. Zx := T x \ Z, Xx := T x \X; Ix contains i0 and all i for which P xi :=
Pi \ T x 6= ;; P x := fP xi ji 2 Ixg; H � Hx := fh(x0)jx0 2 Xxg; Hx � Hx

i := fh(x0)jx0 2
P xi g for all i 2 Ix; Ax :=

S
h2Hx Ah; Axi := Ai \ Ax for all i 2 Ix; px := fphjh 2 Hx

i0
g;

uxi := uijZx for all i 2 Ixn fix0g ; and h (x) � Xx for all x 2 Xx:

The unordered path  (x) � T contains x itself and its predecessors with exception

of the root,  (o) = ;: The path  (x) is the sequence ( k(x))k2f1;:::;j (x)jg such that
 k(x) 2 T;  j (x)j(x) = x; and  k�1(x) = V ( k(x)) for 1 < k � j (x)j: The history of x
is the sequence a( (x)) = (a( k(x)))k2f1;:::;j (x)jg; and the unordered history of x is the

set a( (x)) � A: (Unordered) histories of terminal nodes are called terminal.

An extensive game exhibits perfect recall, if for all i 2 In fi0g ; a 2 Ai; x 2 Pi; and

x0 2 h (x)  (x)\a 6= ; implies  (x0)\a 6= ;. Note that perfect recall implies that di¤erent
nodes have di¤erent (unordered) histories. An extensive game is called non-pathological

if every decision node is followed by at least two nodes; otherwise it is called pathological.

The subclass of non-pathological games is denoted E�:
We denote the set of player i�s pure strategies ai by Ai =

Q
h2Hi Ah and the set [272]

of pure-strategy pro�les a by A :=
Q
i2I Ai. An action pro�le is a vector a+ 2 A+ :=

A � Ai0 . By perfect recall, each a
+ 2 A+ is assigned the unique terminal node z(a+)

satisfying

a( (z(a+))) � fa+h ; h 2 Hg: (2.3)

We set ui(a+) := ui(z(a
+)) for all i 2 In fi0g and a+ 2 A+: Let A+ (h) and A+ (x)

denote the set of action pro�les leading to terminal nodes succeeding h 2 H and x 2 X,
respectively. I.e., A+(o) = A+ and

A+(h) = fa+ja( (z(a+))) \Ah 6= ;g; A+(x) = fa+jx 2  (z(a+)))g: (2.4)

Personal player i (h)�s local strategies bh 2 Bhare the probability distributions on Ah
where bh(a) is the probability of a; Bi =

Q
h2Hi Bh denotes the set of i�s behavior strategies

bi: The set of behavior-strategy pro�les b is denoted B :=
Q
i2Infi0gBi; B

0 � B denotes the
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subset of completely mixed behavior strategy pro�les. Each b 2 B constitutes a probability
distribution on A+ with prob(a+jb) :=

Q
h2Hi0

ph(a
+
h ) �

Q
h2HnHi0

bh(a
+
h ) for all a

+ 2 A+,
and the payo¤ functions are extended to B and A by ui(b) :=

P
a+2A+ prob(a+jb)ui(a+)

for all b 2 B and i 2 In fi0g : A solution concept L for E assigns a set of behavior-strategy
pro�les L(�) � B� the solutions� to any � 2 E .

2.3. Representations. The agent normal form of � 2 E is the game ANF(�) = (HnHi0 ;

(Ah)h2HnHi0 ; (uh)h2HnHi0 ) 2 G with uh = ui(h) for all h 2 HnHi0 , and with A (B)

as the set of pure-strategy (mixed-strategy) pro�les. The normal form of � is the game

NF(�) = (Ini0; (Ai)i2Ini0 ; (ui)i2Ini0) 2 G withA as the set of pure-strategy pro�les: For all
i 2 Ini0 we de�ne an equivalence relation �i on Ai: ai �i a0i i¤ ui0 (ai;a�i) = ui0 (a

0
i;a�i)

for all i0 2 Ini0 and a�i 2 A�i :=
Q
j2Infi;i0gAj : Let [Ai] denote the set of equivalence

classes of Ai and [ai] the equivalence class containing ai: The reduced normal form of �

is the game RNF(�) = (In fi0g ; ([Ai])i2Infi0g; (ui)i2Infi0g) 2 G with [A] :=
Q
i2Infi0g [Ai]

as the set of pure-strategy pro�les [a] := ([ai])i2Infi0g and the ui extended to [A] by

ui ([a]) := ui (a) :

While players are considered to �move� simultaneously in strategic games, players

move in some order in the traditional extensive representations. Consider some G 2 G
and some order of players given by a bijection | : f1; 2; : : : jIjg ! I where player |(n)

moves as the nth one. The |-ordered representation of G 2 G is the game ER|(G) = (T |;
C|; I|; P |;H|; A|; p|; u|) 2 E where Z| = fz|[s]js 2 Sg; I = I|; P | = H|; A|i = fa|[si]j
si 2 Sig for all i; p| = ;; u|i(z|[s]) = ui(s) for all s 2 S; a|( |(z|[s])) = fa|[si]ji 2 Ig;
where a|[si] represents player i�s pure strategy si and z|[s] represents outcome of strategy

combination s: The full de�nition is straightforward.

2.4. Genericity. A game form 
 is a tuple (T;C; I; P;H;A; p); i.e. an extensive game [273]

without payo¤ functions. Let deg (
) := jZ � In fi0gj : Any extensive game � based on a
�xed game form 
 can be represented by a vector � 2 Rdeg(
); we then write � = 
 (�) :

A proposition involving pairs of extensive games (as isomorphism is) holds for generic

payo¤s i¤ for all game forms 
0 there are closed Null sets N
0 � Rdeg(

0) with respect to

the deg (
0)-dimensional Lebesgue measure such that the proposition holds for all pairs of

game forms (
; �
) and all pairs of games (
 (�) ; �
 (��)), � 2 Rdeg(
)nN
 ; �� 2 Rdeg(�
)nN�
 : A
pair of games (
 (�) ; �
 (��)) is called generic with respect to some property if there is some

neighborhood U of � and �U of �� such that the property holds for all pairs (
 (!) ; �
 (�!)) ;

! 2 U; �! 2 �U:

3. Weak isomorphism

In order to identify the players�corresponding actions in two-player extensive games,

Selten (1983) introduces symmetries that are based on bijective mappings of the action
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partition onto itself. Oh (1995) extends these symmetries to extensive games in general

and adds a condition of history (other than ours) preservation in order to exploit history

as a coordination device. Our de�nition straightforwardly extends Oh symmetries into

weak isomorphisms. Yet, we drop the preservation of the Oh histories. In Section 4.1, we

show that the preservation of these histories already is embodied in weak isomorphism in

non-pathological cases.

Definition 3.1. A weak isomorphism from � 2 E onto �� 2 E is a bijection r : A! �A

with the following properties: There are bijections � : H ! �H; � : I ! �I; and � : Z ! �Z

such that

ISA r(Ah) = �A�(h) for all h 2 H;

PL r(Ai) = �A�(i) for all i 2 I,

CPL r(Ai0) =
�A�{0 ;

CPR ph(a) = �p�(h)(r(a)) for all h 2 Hi0 and a 2 Ah;

PTH r(a( (z))) = �a(� (�(z))) for all z 2 Z;

PY for all i 2 Ini0; there are �i; �i 2 R; �i > 0 such that
�u�(i)(�(z)) = �iui(z) + �i for all z 2 Z:

In the following, the single conditions of the de�nition are explained in more detail and

some implications are explored. Note that ISA and PL are implicit in the E&R and PRS
isomorphism. Since E&R focus on games without chance player, CPL and CPR are not

part of the E&R isomorphism, but are embodied in the PSR one. Condition PY allows for

positive a¢ ne transformations of the players�payo¤s, i.e. transformations that preserve

the players�preferences over outcomes. In contrast to (2.1) and Oh (1995), Selten (1983),

E&R, and PSR do not allow for these transformations. Yet, this is rather inessential as [274]

one could restrict attention to games with payo¤s normed on the unit interval. The main

di¤erence between our weak isomorphism based on Selten (1983) and Oh (1995) on the

one hand, and the E&R and the PRS one on the other lies in condition PTH: While PTH
respects unordered terminal histories only, the E&R and the PRS isomorphism, in fact,

respects (ordered) histories, even non-terminal ones.

3.1. Conditions ISA and PL. Condition ISA secures that weak isomorphisms respect

the assignment of actions to information sets. Actions that belong to the same information

set are mapped onto actions of one information set. The bijection � is determined uniquely

by r: In addition, any bijection r : A! �A satisfying ISA induces a unique bijection r+ =

(r+�h )�h2 �H : A
+! �A

+ with

r+�(h)(a
+) := r(a+h ) (3.1)

for all a+ 2 A+ and h 2 H where � is determined by r according to ISA.



II.3. WEAK ISOMORPHISM 33

�
o

�
x1

�
x2

�
z1

(1)

�
z2

(0)

�
z3

(1)

�
z4

(0)

...............................................................................................................................................

...............................................................................................................................................................................................................................................................................

�
3
4

� ..........................................................................................................................

�
1
4

� ..........................................................................................................................

�
1
2

� ................................................................................................................................

�
1
2

�

Figure 3. Condition CPR is indispensable

Condition PL secures that weak isomorphisms respect the assignment of actions to
players, and together with ISA also the assignment of information sets to players, �(Hi) =
�H�(i) for all i 2 I; i.e., information sets that belong to the same player are mapped onto
information sets of one player. The bijection � is uniquely determined by r.

3.2. Preservation of the structure of the chance mechanism. Together with ISA,
CPL and CPR secure that weak isomorphisms respect the structure of the chance mech-

anism. I.e., alternative decompositions of compound lotteries do matter, even if the re-

sulting expected payo¤s are the same. As explained in the Introduction, such di¤erences

might create focal points.

CPL preserves the external structure, i.e. the assignment of actions and information
sets to the chance mechanism. In view of PL, CPL implies �(i0) = �{0 and � (Hi0) =

�H�{0 .

In addition, any bijection r : A! �A satisfying ISA and CPL induces a unique bijection
r = (r�h)�h2 �Hn �H�{0

: A! �A and its extension to B and �B with

r�(h)(a) := r(ah) and r�(h)(b)(r(a)) := bh(a) (3.2)

for all h 2 HnHi0 ; a 2 A; b 2 B, and a 2 Ah:
Obviously, CPR makes sense only together with ISA and CPL. Then, ISA and

CPR preserve the internal structure of the chance mechanism. Actions of one chance

information set are kept together and are mapped onto chance actions with the same

probabilities. As the following example shows, we hardly can do without CPR.

Example 3.2. Consider the game in Figure 3 where player 1 controls node o; and x1
and x2 are controlled by the chance mechanism with the probabilities in brackets. Let r :

A! A be such that r(fx1g) = fx2g; r(fz1g) = fz3g; r(fz2g) = fz4g and vice versa. While
r violates CPR, it satis�es PTH, ISA, PL, CPL, and PY: But choosing fx1g gives
player 1 the payo¤ 3

4 ; while choosing fx2g gives
1
2 : Therefore, action fx1g should not be [275]

mapped onto fx2g.
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3.3. Preservation of unordered terminal histories. Condition PTH preserves the

sequential structure to some extent: Unordered terminal histories are required to be

mapped onto each other. By perfect recall, this determines the unique bijection � : Z ! �Z.

Instead, one could think of the possibly more intuitive requirement of mapping terminal

histories onto each other. Within De�nition 3.1, this is equivalent to � satisfying

PTH+ r(a( (z))) = �a(� (�(z))) for all z 2 Z;
where r is extended to histories by r(a( (x))) := (r(a( k(x))))k2f1;:::;j (x)jg for all x 2 T:
This implies the preservation of histories in general. Practically, this was done by PRS

which can be seen from the fact that histories in the sequence representation (see e.g.

Osborne & Rubinstein 1994) can be identi�ed with the nodes in the tree representation.

Since PTH+ implies PTH, the PRS isomorphisms (extended by positive a¢ ne trans-
formations of the payo¤ functions) are the weak isomorphisms that satisfy PTH+. Our

leading example shows that the converse does not hold.

While in the following it is argued that PTH is not to weak a requirement, �rstly, we

show that PTH is not too strong.

Lemma 3.3. Let �; �� 2 E; and let r be a bijection r : A ! �A that satis�es ISA and

PTH: Then,

PTH� �(z(a+)) = �z(r+(a+)) for all a+ 2 A+;
where r+ is given by r via (3.1), and � is determined by PTH.

In a sense, PTH� (replacing PTH) seems to be the weakest conceivable requirement
that preserves the sequential structure of extensive games: Action pro�les that lead to

the same terminal node should be mapped onto each other. By perfect recall, this deter-

mines a unique bijection �; and by Lemma 3.3, PTH� is implied by PTH and ISA. A
counterexample reveals that the converse may not hold in pathological cases.

[276]

Example 3.4. Consider the games in Figure 4 where "1; "2; "3; "4 2 ]0; 1[ are pairwise
di¤erent; i.e. payo¤s are generic. Let r : A ! �A map any action (A;B; a; b; c; d) on

the action with the same label: Obviously, r satis�es ISA and PTH�, and induces the

bijection � : Z ! �Z; �(zk) = zk for k = 1; 2; 3: But r(a( (z2))) = fA; b; cg 6= fA; b; dg =
�a(� (�(z2))); i.e., PTH does not hold. Note that r also satis�es PL, CPL, CPR, and
PY.

One could argue that PTH� is to weak. Yet, for non-pathological games, PTH� and

PTH coincide in presence of ISA. Hence, PTH� does not weaken PTH substantially.

Theorem 3.5. Let �; �� 2 E� and r : A ! �A be a bijection that satis�es ISA and

PTH�: Then, r also satis�es PTH.
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Figure 4. Pathological games

3.4. Preservation of preferences. In view of PL, CPL, and PTH, condition PY
simply requires the usual preservation of the players�preferences over outcomes.

3.5. Invariance under weak isomorphism. Obviously, weak isomorphism constitutes
an equivalence relation on E : Two games �; �� 2 E are called weakly isomorphic (� �= ��) if
there is a weak isomorphism r from � onto �� (� r�! ��). A solution concept L is invariant

under weak isomorphism if for all �; �� 2 E and all weak isomorphisms � r�! �� we have

r(L(�)) = (��) for r given by r via (3.2).

Weak automorphisms are called weak symmetries. A behavior-strategy pro�le b is

called weakly symmetry invariant if r(b) = b for all mappings r given by weak symmetries

r of � via (3.2). Actions (players) are called weakly symmetric if they are mapped onto each

other by some weak symmetry. By (3.2), weakly symmetry-invariant behavior-strategy

pro�les can be characterized by symmetric actions being assigned the same probabilities. [277]

Clearly, a one-point solution concept that is invariant under weak isomorphism has to

select a weakly symmetry invariant behavior strategy.

4. Equivalence

4.1. Oh histories. In order to re�ne the Selten (1983) symmetry, Oh (1995) introduces
a structure called history (other than ours) and then sharpens symmetry by a requirement

of history preservation. In non-pathological cases, however, history preservation already

is embodied in the original symmetry. It seems as if Selten�s (1983, p. 287) �warning�that

�: : : the pure strategy sets of both players never coincide even if the game is obviously

symmetric in any reasonable sense�has not been taken seriously enough: Not even actions
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Figure 5. Subgame preservation

of one player can be the same at di¤erent information sets� an action is just a cell of the

action partition.

According to Oh, the history hist(h) of player i (h)�s information set h is the collection

of all players�past action choices, from the root to h; which player i (h) can identify. Yet,

the phrase �which player i can identify�is not made more explicit. Applications suggest

that a history is a correspondence hist : H � A;

hist(h) := fa : 8x 2 h :  (x) \ a 6= ;g : (4.1)

So a history hist(h) comprises the actions of which player i(h) knows for sure at h that they

actually have been taken. Histories are exploited in analogy to the following extension of

weak isomorphisms � r�! �� by a condition of history preservation:

HIS r(hist(h)) = hist(�(h)) for all h 2 H:

Theorem 4.1. For E�, HIS is implied by weak isomorphism.

The following example reveals that the Theorem may fail for pathological games.

Example 4.2. Consider the games in Figure 5 where "1; "2; "3 2 ]0; 1[, "1 6= "2 6= "3 6=
"1; i.e. payo¤s are generic. Let the weak isomorphism ��

r�! � map any action on the

action with the same label. The Oh history of player 2�s information set is empty in ��:

Yet in �; the history of player r (2)�s information set is fcg : Hence, HIS does not hold.

4.2. Reduced normal form. Weak isomorphism largely respects the structure of a

game. So it is not too astonishing that arguments similar to those in the proof of Theorem

4.7 below, together with PL, show that weak isomorphism implies isomorphism of the
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Figure 6. The COA transformation

(reduced) normal form. Since the (reduced) normal form contains less structure than the

original game, the converse does not hold in general.

Theorem 4.3. For �; �� 2 E ; � �= �� implies NF (�) �= NF(��) and RNF (�) �= RNF(��): [278]

Considering extensive games with perfect recall without chance player, E&R show that

extensive games with isomorphic reduced normal forms can be transformed into each other

via a �nite chain of games that di¤er by one of three transformations, Addition of Decision

Nodes (ADD), Coalescing of Information Sets (COA), and Interchange of Decision Nodes

(INT), which all preserve perfect recall. Kohlberg & Mertens (1986, pp. 1008) show how

these results can be generalized to games with a chance player. Thompson (1952) obtains a

similar result with four transformations, one of them not preserving perfect recall. Hence,

weakly isomorphic games are E&R and Thompson equivalent.

Example 4.4. Consider the games in Figure 6 due to Kohlberg & Mertens (1986)

which both have isomorphic reduced normal forms and therefore are E&R and Thompson

equivalent:

[279]
RNF (�) �= RNF(��)

c d

A 2; 2 2; 2

Ba 1; 1 0; 0

Bb 1; "1 3; 3

Yet, the games itself are not weakly isomorphic, even generically: � has more information

sets than ��:

In view of Example 4.4, at least one of the E&R transformations must violate weak

isomorphism. While ADD increases the number of terminal nodes, COA reduces the
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Figure 7. The ADD transformation

number of information sets. Hence, both transformations violate weak isomorphism. Note

that in Example 4.4, the game � is transformed into �� by the COA transformation. It

reduces two moves in a row by a single player (B and a; B and b) into a single one (Ba;

Bb). Figure 7 presents an example of the ADD transformation.

In contrast, INT transforms a game into a weakly isomorphic one. Since INT changes

the order of players, it does not preserve the PSR and the E&R isomorphism in general.

Figure 8 provides an example that illustrates the original de�nition of INT where a (w) =

a (v) ; a (ŵ) = a (v̂) ; �a (w) = �a (ŵ) ; and �a (v) = �a (v̂) : The game remains unchanged

except for the changes in the �gure. There are no new actions (information sets) and

no new terminal nodes in ��: Consider the bijection r : A ! �A; r (a (t)) = �a (t) for t 2
Tn fy; ŷ; v; v̂; w; �wg ; r (a (y)) = �a (w), r (a (ŷ)) = �a (v), r (a (w)) = �a (y) ; and r (a (ŵ)) =

�a (ŷ) : Then, r satis�esPTH and induces the identity mapping on the set of terminal nodes. [280]

This can be seen from the fact that unordered histories of terminal nodes succeeding

ŵ contain the actions a (ŵ) and a (y) which are mapped onto �a (ŷ) and �a (w) = �a (ŵ),

respectively, which are contained in the unordered histories of terminal nodes succeeding

ŵ; the same holds for w; v; and v̂: Since the other properties are quite immediate, this

establishes r to be a weak isomorphism �
r�! ��:

4.3. Normal form. The representations ER|(G) contain just as much structure as the
games G itself with respect to weak isomorphism. Therefore, we have some (very limited)

converse of Theorem 4.3. For the class of traditional extensive game representations of

strategic games weak isomorphism and isomorphism of the normal form coincide. Note

that NF(ER|(G)) �= G:

Theorem 4.5. Let G; �G 2 G be ordered by | and �|, respectively. Then, G �= �G i¤

ER|(G) �= ER�|( �G):
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Figure 8. The INT transformation

This implies weak isomorphism of an extensive game�s ordered representations. E.g.,

the ordered representations in Figure 1 are weakly isomorphic. In contrast, though having

the same normal form, the ordered representations and the PSR ones (Figure 2) are

not weakly isomorphic. Another immediate consequence is the desired equivalence of

symmetry in strategic games and their traditional representation.

Corollary 4.6. Strategies and players in G 2 G are symmetric i¤ their counterparts
in some ER|(G) are weakly symmetric, respectively.

4.4. Agent normal form. The strong structure preservation property of weak isomor-
phism spreads to the agent normal forms.

Theorem 4.7. For �; �� 2 E ; � �= �� implies ANF (�) �= ANF(��):

Even though the agent normal form contains more structure than the (reduced) normal

form, some structure of the original game is lost under transformation. Therefore, the

converse of Theorem 4.7 does not hold in general. Instead, we have some weaker generic

result for non-pathological games without chance player.

Theorem 4.8. Let �; �� 2 E� be without chance player. For generic payo¤s, ANF (�) �=
ANF(��) implies � �= ��:

The following examples show that we cannot do without the restrictions in Theorem

4.8: By ISA,CPL, andCPR, weak isomorphism is sensitive to alternative decompositions
of compound lotteries. For the strategic game representations, of course, this makes no [281]

di¤erence. Instead, one could think about restricting oneself to the class of games where

the chance player moves (at most) once only at the beginning of the game. Yet, even in

this simple case, the converse does not hold: Consider a generic, non-pathological game �

without chance player and the game �� which is the same as � except for that the root of
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� has one chance node as immediate predecessor, and the single other successor of that

chance node is a terminal node. Then, the agents�payo¤s in the agent normal forms di¤er

by positive a¢ ne transformations only. Hence, the agent normal forms are isomorphic,

while the games itself are not. The ordered representations in Figure 1 and the PRS

representations in Figure 2 are another example. While being not weakly isomorphic, the

agent normal forms, i.e. the underlying Battle-of-the-Sexes game in strategic form are

identical.

Besides the structure of the chance mechanism, the agent normal form disregards the

assignment of information sets/agents to players as well as the relation between strategies

and outcomes (terminal nodes). Note that in the proof of Theorem 4.8, we account for

this by twice employing a genericity argument. As the ADD transformation (see Figure

7) adds some terminal nodes which bear the same payo¤ vectors as some of the original

ones, the transformed game is �non-generic�.

Consider the game � from Figure 9 and a modi�cation �� where the root also is con-

trolled by player 1: Since player 1 and 3 have the same preferences, on the one hand, this

example is non-generic. On the other hand, this enables the agent normal forms both of �

and �� to be isomorphic to the strategic game below. In contrast, the games itself are not

weakly isomorphic� there are more players in � than in ��: This non-equivalence of � and
��, however, seems to be desirable: While some forward induction argument applies to ��;

there is no such argument for �. Whenever player 2 is to move in �; he knows that player

1 gave up the sure payo¤ 2 which only makes sense if she aims at getting the higher payo¤

3 by choosing a: So, player 2 should take action C and player 1 take action B: Formally,

(Ba; c) is the unique equilibrium surviving iterated deletion of weakly dominated strate-

gies in RNF(��): Since no strategy is weakly dominated in RNF (�), the other equilibrium

(A; b;D) survives for �:

[282]A

C D

a 2; 2; 2 2; 2; 2

b 2; 2; 2 2; 2; 2

B

C D

a 3; 1; 3 0; 0; 0

b 0; 0; 0 1; 3; 1

C D

A 2; 2 2; 2

Ba 3; 1 0; 0

Bb 0; 0 1; 3

ANF (�) ;ANF(��);NF (�) ;RNF (�) RNF(��)
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Figure 9. Assignment of information sets to players matters

Reconsider the pathological games � and �� from Example 3.4 which have the same

agent normal form:

ANF (�) ;ANF(��)

c; d

a b

A 1; "2; 1; 1 0; 0; 0; 0

B "1; 1; "3; "4 "1; 1; "3; "4

Yet, generically, the games itself cannot be weakly isomorphic: In generic cases, the pref-

erences in � and �� di¤er for all players. Hence, any weak isomorphism �
r�! �� would

induce the mapping � as in the Example. By PTH, we had r(a( (z2)) [ a( (z3))) =
r (fA;B; b; c; dg) = fA;B; b; dg = �a(� (�(z2)) [ �a(� (�(z3)))); contradicting r being bijec-
tive.

5. Invariance of equilibria under weak isomorphism

In order to �t the traditional strategic representations, weak isomorphism sacri�ces

some structure of extensive games� the strict order of moves. Hence, invariance of solu-

tion concepts under weak isomorphism is stronger then the PSR equivalent. Nevertheless,

Nash equilibrium, perfect equilibrium, and sequential equilibrium show this invariance in

general, and subgame perfect equilibrium in non-pathological cases. Since the Nash and

the perfect equilibrium can be de�ned via the normal form or the agent normal form,

respectively, this is not too astonishing. In contrast, subgame perfect equilibrium and se-

quential equilibrium more directly refer to the sequence of moves. Interestingly, sequential

equilibrium is not invariant under the E&R transformations: Kohlberg & Mertens (1986)

present an example where the COA transformation produces a new sequential equilibrium.

Reconsider Example 4.4: The game � is transformed into �� by COA. While (A; c) is a
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sequential equilibrium in �� for "1 � 2; (B; b; d) is the only sequential equilibrium in � for

1 < "1 � 2: Of course, � and �� are not weakly isomorphic.
Together with the invariance of Nash equilibrium (in G) under isomorphism (Har-

sanyi & Selten 1988), Theorem 4.3 implies the invariance of Nash equilibrium under weak

isomorphism. Analogously, Theorem 4.7 implies

Theorem 5.1. Perfect equilibrium is invariant with respect to weak isomorphism.

The same holds true for sequential equilibrium. [283]

Theorem 5.2. Sequential equilibrium is invariant with respect weak isomorphism.

In contrast, subgame perfect equilibrium is not invariant with respect to weak iso-

morphism, not even generically. Reconsider Example 4.2. Since there is no non-trivial

subgame in ��, the behavior-strategy pro�le (B; b; c) is a subgame perfect equilibrium. In

contrast, the game � has a subgame rooted in the decision node of player 3. Since (a) is the

unique Nash equilibrium of this subgame, the unique subgame perfect equilibrium of the

whole game is (A; a; c) : Yet, the weak isomorphism r does not map (B; b; c) onto (A; a; c) :

Note that this invariance is caused in that r does not respect the subgame structure: The

inverse � r�1�! �� maps the action partition fa; bg of the subgame in � onto fa; bg which is
not the action partition of some subgame of ��. The games in the example, however, are

pathological. Without this peculiarity we have

Theorem 5.3. For E�, subgame perfect equilibrium is invariant with respect to weak

isomorphism.

Since one-point solution concepts that are invariant under weak isomorphism select

a unique weakly symmetry-invariant behavior-strategy pro�le, one might be concerned

about the existence of weakly symmetry invariant equilibria. With our de�nition, we

allow for a wider range of mappings to be isomorphisms than PSR. So our weak symmetry

invariance is more restrictive. Nevertheless, even symmetry invariant perfect equilibria

do exist for every extensive game. The existence of weakly symmetry invariant Nash

equilibria, sequential equilibria, and subgame perfect equilibria then directly follows from

Selten (1975) and Kreps & Wilson (1982).

Theorem 5.4. Every extensive game has a weakly symmetry-invariant perfect equilib-

rium.

6. Conclusion

In this paper, we introduced and advocated weak isomorphism of extensive games. As

the Harsanyi & Selten (1988) isomorphisms of strategic games, isomorphisms of exten-

sive games can be viewed as a means to identify structurally similar extensive games and
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to identify corresponding structural elements of these games� players, information sets,

actions, and nodes. And it is this emphasis of structural features that distinguishes iso-

morphisms from considerations of strategic equivalence as the Kohlberg & Mertens (1986)

invariance requirement or the Thompson (1952) and the E&R transformations.

In order to make our isomorphism �t strategic game isomorphism, we had to give up the

strong preservation of the order of moves within a game� in contrast to the E&R and PSR

ones. Nevertheless, the invariance of equilibrium concepts under weak isomorphism� as a [284]

necessary property of preserving the essence of the order of moves� remains untouched. So

weak isomorphism can be viewed as an adequate means to describe structural similarities of

extensive games if one considers the sequential nature of moves as a technical peculiarity of

the extensive game formalism and not necessarily as a representation of sequential choices.

In addition, it seems to be the weakest conceivable such a concept of isomorphism. After

all, we provide some more justi�cation for the use of these isomorphisms by Selten (1983)

and Oh (1995).
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Appendix A

Lemma A.1. Let r be a weak isomorphism �
r�! ��. For all a+ 2 A+ and b 2 B; we

have prob(a+jb) = prob(r+(a+)jr(b)) where r and r+ are given by r via (3.2) and (3.1),
respectively.

Proof. For all a+ 2 A+ and b 2 B we have

prob(r+(a+)jr(b)) :=
Y
�h2 �H�{0

�p�h(r
+
�h
(a+))

Y
�h2 �Hn �H�{0

r�h(b)(r
+
�h
(a+))

=
Y
h2Hi0

�p�(h)(r
+
�(h)(a

+))
Y

h2HnHi0

r�(h)(b)(r
+
�(h)(a

+))

=
Y
h2Hi0

�p�(h)(r(a
+
h ))

Y
h2HnHi0

r�(h)(b)(r(a
+
h ))

=
Y
h2Hi0

ph(a
+
h )

Y
h2HnHi0

bh(a
+
h )

=: prob(a+jb)
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from (3.2), and (3.1); � being bijective and CPL; (3.2) and (3.1); CPR and (3.2), respec-

tively.

Proof of Lemma 3.3. For all a+ 2 A+; we have fr+�h (a
+)j�h 2 �Hg = fr+�(h)(a

+)jh 2 Hg
= fr(a+h ); h 2 Hg � r(a( (z(a+)))) � �a(� (�(z(a+)))) from � being bijective, (3.1), (2.3),

and PTH. Hence, �z(r+(a+)) = �(z(a+)) by (2.3) and (3.1).

Proof of Theorem 3.5. Let r be a bijection r : A! �A that satis�es ISA and PTH�:

By de�nition, PTH� induces a bijection � : Z ! �Z such that �(z(a+)) = �z(r+(a+)) [285]

for all a+ 2 A+ where r+ is determined by r and ISA via (3.1). Since z(A+) = Z; it

is su¢ cient to show that we have r(a( (z(a+)))) = �a(� (�z(r+(a+)))) for all a+ 2 A+:
Suppose, there were some a+ 2 A+ and h 2 H such that a+h 2 a( (z(a+))) but r(a

+
h ) =2

�a(� (�z(r+(a+)))): Since � 2 E�, some a+0 2 A+ existed such that a+
h
0 = a+

0

h0
for all

h0 2 Hn fhg and a+h 6= a+
0

h : By ISA and (2.3), we have r(a+
0

h ) =2 �a(� (�z(r+(a+)))) and
therefore �z(r+(a+)) = �z(r+(a+

0
)): Yet, by (2.3), we have z(a+) 6= z(a+

0
); contradicting

� being bijective: Thus, r(a( (z(a+)))) � �a(� (�z(r+(a+)))): Analogously, one can show

that r(a( (z(a+)))) � �a(� (�z(r+(a+)))): Therefore, r(a( (z(a+)))) = �a(� (�z(r+(a+)))) =
�a(� (�(z(a+)))) for all a+ 2 A+; i.e., PTH holds.

Proof of Theorem 3.5, improved version. Let r be a bijection r : A ! �A that

satis�es ISA and PTH�: By de�nition, PTH� induces a bijection � : Z ! �Z such that

�(z (a+)) = �z (r+ (a+)) for all a+ 2 A+ where r+ is determined by r and sISA via (3.1).

Consider z 2 Z and a 2 a ( (z)) : Non-pathologically, there is some a0 2 AV (a), a0 6= a: Let

a+
0 2 A+ be such that a+0V (a) = a0 and a+

0

h = ah for h 6= V (a) : Obviously, z 6= z
�
a+

0
�
:

Suppose, r (a) =2 �a
�
� (� (z))

�
: Then, we had

�a
�
� (� (z))

�
�
n
r+�h (a) j�h 2 �H

o
n fr (a)g �

n
r+�h

�
a+

0
�
j�h 2 �H

o
i.e. � (z) = z

�
r
�
a+

0
��

; contradicting PTH�: Henze, r (a ( (z))) � �a
�
� (� (z))

�
: Since

the inverse of r satis�es ISA and PTH�, the converse inclusion is immediate. Hence,

PTH holds.

The following Lemma gives another implication of PTH which is used in some proofs

below.

Lemma A.2. Let r be a weak isomorphism � r�! ��. For all h 2 H; we have r+(A+(h)) =
�A+(�(h)) for r+ determined by r via (3.1).

Proof. By (2.4), this can be seen from r(a( (z(a+)))\Ah) = r(a( (z(a+))))\ r(Ah) =
�a(� (�(z(a+))))\ �A�(h) = �a(� (�z(r+(a+))))\ �A�(h); where the single equations follow from
r being bijective, PTH and ISA, and Lemma 3.3, respectively.



II. Appendix A 45

Lemma A.3. Let r be a weak isomorphism �
r�! ��. For all a 2 A and i 2 In fi0g, we

have �u�(i)(r(a)) = �iui(a) + �i where r is given by r via (3.2).

Proof. For all b 2 B and i 2 In fi0g we have

�u�(i)(r(b)) :=
X

�a+2�A+

prob(�a+jr(b)) � �u�(i)(�a+)

=
X

a+2A+

prob(r+(a+)jr(b)) � �u�(i)(r(a+))

=
X

a+2A+

prob(a+jb) � �u�(i)(r(a+))

= �i

0@ X
a+2A+

prob(a+jb) � ui(a+)

1A+ �i
=: �iui(b) + �i

from r+ being bijective, Lemma A.1, (2.3) and PY, respectively.

Proof of Theorem 4.1. Let �,�� 2 E�, and let r be a weak isomorphism � r�! �� inducing

� : H ! �H via ISA. We �rst provide a characterization of hist: For � 2 E�, a 2 hist(h) if
and only if a+V (a) = a for all a+ 2 A+(h). The if part directly follows from the de�nition.

Suppose on the contrary there were some a 2 A; h 2 H such that a+V (a) = a for all a+

2 A+(h) a+V (a) = a and a =2 hist(h) for some a. Then, there were some x 2 h such that

 (x) \ a = ;: By assumption, there were some �a+ such that x 2  (z(a+)) and  (z(a+))
\ a 6= ;: Let x0 be unique element of  (z(a+)) \ a: So we have x C x0: Since the game [286]

is non-pathological, N(V (x)) contains some x00 6= x0: Clearly, a(x00) 6= a(x0) = a: Hence,

there were some a+
0 2 A+(h) with a+0V (a) = a(x00) 6= a. A contradiction.

Let a 2 hist(h): By the characterization, a+ 2 A+(h) implies a+V (a) = a: By Lemma

A.2, we have �a+�(V (a)) = r(a) for all �a+ 2 �A+(�(h)): Again by the characterization, we

have r(a) 2 hist(�(h)) and therefore, r(hist(h)) � hist(�(h)): Since the inverse r�1 is a

weak isomorphism, the converse inclusion is immediate. This establishes the claim.

Proof of Theorem 4.5. Let f = (�; (ri)i2I) be some isomorphism G
f�! �G: It is easy to

see that the mapping r : A| ! �A�|, r(a|[si]) = a�|[ri (si)] for all i 2 I and si 2 Si is a weak
isomorphism ER|(G)

r�! ER�|( �G): Let now r be a weak isomorphism ER|(G)
r�! ER�|( �G)

inducing � by PL. The system f = (�; (ri)i2I) with �(i) = �|(i) for all i 2 I and ri(si)

= si0 i¤ r(a|[si]) = a�|[si0 ] for all i; i0 2 I, si 2 Si; and si0 2 Si0 obviously is an isomorphism
G

f�! �G:

Proof of Theorem 4.7. Let r be a weak isomorphism �
r�! ��; and let �; �; and � be

the bijections induced by r according to De�nition 3.1. By ISA and CPL, the restriction
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�� := �jHnHi0 of � on HnHi0 is a bijection of HnHi0 onto �Hn �H�{0 : By ISA, r can be split
into bijections rh : Ah ! A��(h) with rh(a) := r(a) for all h 2 HnHi0 and a 2 A. By

Lemma A.3, we have u��(h)(r(a)) = �iuh(a) + �i for all h 2 HnHi0 and a 2 A: Since by
(3.2) r is induced by the rh in accordance with (2.2), f =(��; (rh)h2HnHi0 ) is an isomorphism

ANF (�)
f�! ANF(��):

Proof of Theorem 4.8. Let f = (�; (rh)h2H) be an isomorphism ANF (�)
f�! ANF(��).

Since Ai0 and �A�{0 are empty, the mapping r : A ! �A, r (a) = rV (a) (a) for all a 2 A is

well-de�ned and satis�es CPL and CPR. Since f is an isomorphism, r is bijective and
induces the bijection � : H ! �H; r (Ah) = �A�(h) for all h 2 H; and therefore complies

ISA. For jIj � 1; r trivially satis�es PL. By (2.1), for all h 2 H; there are �h; �h 2 R;
�h > 0; such that �u�(h) (r (a)) = �huh (a) + �h; i.e.

�u�{(�(h)) (�z (r (a))) = �hui(h) (z (a)) + �h (A.1)

for all a 2 A = A+; where r = r+ is induced by f and r via (2.1) or (3.2). For jIj > 1;

we have jZj � 3 by � 2 E�: Hence, generically, the players� preferences are pairwise
di¤erent. Therefore, i (h) = i (h0) and �{ (� (h)) = �{ (� (h0)) are equivalent for all h; h0 2 H:
Hence, r induces a bijection � : I ! �I; r (Ai) = �A�(i) for all i 2 I; and therefore

complies ISA. Fix some i0 2 I: Generic payo¤s imply that the ui0 (z) ; z 2 Z and the

�u�(i0) (�z) ; �z 2 �Z are pairwise di¤erent, respectively. Therefore, z (a) = z (a0) is equivalent

to �z (r (a)) = �z (r (a0)) for all a;a0 2 A: Hence, we have a bijection � : Z ! �Z that satis�es

PTH�: Theorem 3.5 then implies PTH. As z (A) = Z and �z (r (A)) = �z
�
�A
�
= �Z; PY

holds by (A.1). Hence, r is a weak isomorphism �
r�! ��:

Proof of Theorem 5.1. Let r be a weak isomorphism �
r�! ��, and let b be a perfect

equilibrium of �: By Selten (1975), b is a perfect equilibrium of ANF (�) : Let r be induced

by r via (3.2). Since r also is the bijection induced by some isomorphism ANF(�)
f�!

ANF(��) via (2.2), r(b) is a perfect equilibrium of ANF(��) (see the proof of Theorem 4.7), [287]

hence a perfect equilibrium of �� (Selten 1975): Since r�1 also is a weak isomorphism, this

proves the claim.

Proof of Theorem 5.2. Within our notation, sequential equilibria are de�ned as follows:
For � 2 E , a system of beliefs is a mapping � : X ! [0; 1] satisfying

P
x2h �(x) = 1 for

all h 2 HnHi0 : Together with a behavior-strategy pro�le it is called an assessment. An

assessment (�; b) is a sequential equilibrium if it is consistent and sequentially rational.
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The payo¤ uh(�; b) of a personal player i(h) at h 2 HnHi0 with respect to � is de�ned

via

prob(zjb; x) =

8>>><>>>:
Y

a2a( (z)n (x))
a=2Ai0

bV (a)(a)
Y

a2a( (z)n (x))
a2Ai0

pV (a)(a) : z 2 Z(x);

0 : z =2 Z(x);

(A.2a)

ux(b) =
X

z2Z(x)

prob(zjb; x)X
z02Z(x)

prob(z0jb; x)
ui(x)(z); (A.2b)

uh(�; b) =
X
x2h

�(x)ux(b); (A.2c)

where Z(x) denotes the set of terminal nodes succeeding x: An assessment (�; b) is called

sequentially rational if uh(�; b) � uh(�; b
0
ib�i) for all i 2 In fi0g ; h 2 Hi, and b0i 2 Bi;

where b0ib�i denotes the behavior-strategy pro�le in which all personal players follow b,

except for player i who follows b0i:

For b 2 B0, let �(b) denote the system of beliefs that is associated with b via Bayes�

rule, i.e., we have

�(b)(x) :=
prob(xjb)
prob(h(x)jb) =

X
a+2A+(x)

prob(a+jb)

X
a+2A+(h(x))

prob(a+jb)
: (A.3)

An assessment (�; b) is called consistent if there is some sequence (bn)n2N in B0 such that

limn!1(�(bn); bn) = (�; b):

Proof. Let r be a weak isomorphism �
r�! �� with �, r+; and r induced via ISA,

(3.1), and (3.2), respectively. Let further (�; b) be a sequential equilibrium of �: By de-

�nition, there is some sequence (�(bn); bn)n2N, bn 2 B0 with limn!1(�(bn); bn) = (�; b).

Consider the sequence (��(r(bn)); r(bn))n2N: By (3.2), r(bn) 2 �B0. Since the set of belief

systems on �� is compact, (��(r(bn)))n2N contains a converging subsequence. For nota-

tional parsimony, let (��(r(bn)))n2N itself be this subsequence. Since r is continuous, we

have limn!1(��(r(bn)); r(bn)) = (��; r(b)) for some system of beliefs ��: Hence, (��; r(b)) is

consistent.

The beliefs �(b) derived from b by Bayes�rule at some information set h are not a¤ected

by changing player i(h)�s part of b only: By perfect recall, any action of i(h) that precedes [288]

some x 2 h also precedes all other nodes of h: Therefore, changing i(h)�s behavior strategy
only changes prob(xjb) for all x 2 h by the same factor, and � (b) (x) remains unchanged.
So we have

uh(�(b); b) = uh(�(b
0); b) (A.4)



II. Appendix A 48

for all b; b0 2 B0 with b0i0 = bi0 for all i0 6= i(h): For all h 2 HnHi0 and b 2 B0; we have

�u�(h)(��(r(b)); r(b)) =
X

�a+2�A+(�(h))

prob(�a+jr(b))P
�a+02�A+(�(h))

prob(�a+0 jr(b)) �u�{(�(h))(�a
+)

=
X

a+2A+(h)

prob(r+(a+)jr(b))P
a+02A+(h)

prob(r+(a+0)jr(b)) �u�(i(h))(r
+(a+))

=
X

a+2A+(h)

prob(a+jb)P
a+

02A+(h)

prob(a+0 jb) �u�(i(h))(r
+(a+))

=
X

a+2A+(h)

prob(a+jb))P
a+02A+(h)

prob(a+0 jb)

�
�i(h)ui(h)(a

+) + �i(h)

�
= �i(h)uh(�(b); b) + �i(h) (A.5)

from (A.2), v being bijective and Lemma A.2, Lemma A.1, Lemma A.3, and (A.2), re-

spectively.

Suppose (��; r(b)) were not sequentially rational. Then, some �{ 2 �In f�{0g ; �h 2 �H�{ and
�b 2 �B existed such that �b�h0 = r�h0(b) for all �h

0 =2 �H�{ and �u�h(��;�b) > �u�h(��; r(b)). Let (�b
n)n2N

be some sequence such that limn!1 �bn = �b; �bn 2 �B0; and �bn�h0 = r�h0(b
n) for all �h0 =2 �H�{:

Since �u�h is continuous, there are n0 2 N and 0 < " 2 R such that

�u�h(��(r(b
n));�bn) > �u�h(��(r(b

n)); r(bn)) + "

for all n0 < n. Since �bn only di¤ers from r(bn) at information sets of player �{(�h), by (A.4),

we have

�u�h(��(
�bn);�bn) > �u�h(��(r(b

n)); r(bn)) + "

and, by (A.5),

u��1(�h)(�(r
�1(�bn)); r�1(�bn)) > u��1(�h)(�(b

n); bn) +
"

�i(��1(�h))
:

Since by PL bn and r�1(�bn) di¤er at information sets of player i(��1(�h)) only, by (A.4),

we have

u��1(�h)(�(b
n); r�1(�bn)) > u��1(�h)(�(b

n); bn) +
"

�i(��1(�h))

and, since uh, �; and r�1 are continuous,

[289]u��1(�h)(�; r
�1(�b)) > u��1(�h)(�; b);

where r�1(�b) di¤ers from b at information sets of player i(��1(�h)) only. This contra-

dicts (�; b) being sequentially rational. Thus, (��; r(b)) is a sequential equilibrium. Since

converses of weak isomorphisms are weak isomorphisms, this proves the claim.
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Proof of Theorem 5.3. The proof is prepared by a lemma. Extending Selten�s (1983,
Theorem 1) proof for symmetries to weak isomorphisms and the case of more than two

players, we have

Lemma A.4. Let �; �� 2 E�, and let r : A ! �A be a bijection that satis�es ISA and

PTH: Then, for any subgame �x there is some subgame ���x such that r(Ax) = �A�x.

Proof. (Theorem 5.3) Let �; �� 2 E�; r be a weak isomorphism �
r�! �� with r : B ! �B

induced via (3.2), ���x some subgame of ��; and b some subgame perfect equilibrium of �:

We have to show that the restriction r (b)�x of r (b) to ���x is a Nash equilibrium of ���x: By

Lemma A.5, there is some subgame �x such that r (Ax) = �A�x: Then, the restriction rx

of r to Ax is a weak isomorphism �x
rx�! ���x: Obviously, rx is bijective and inherits the

properties ISA, CPL, CPR. For all i 2 Ix we have r(Axi ) = r(Ai \Ax) = r(Ai) \ r(Ax)
= A�(i) \Ax = Ax�(i); i.e. �(I

x) = Ix; rx also satis�es PL. Since a( x(z)) = a( (z)) \Ax

for all z 2 Zx; we have rx(a( x(z))) = r(a( (z)) \Ax) = r(a( (z))) \Ax = a( (�(z))) \
Ax = a( x(�(z))). Hence, PTH and PY hold. Since b is subgame perfect, the restriction

bx of b to �x is a Nash equilibrium. By ISA and the invariance of Nash equilibrium under

weak isomorphism r (b)�x = rx (bx) is a Nash equilibrium of ���x:

Proof of Theorem 5.4. Symmetry invariant equilibria of �nite strategic games do

always exist (Nash 1951). Together with the continuity of f given by (2.2), applied within

the usual existence proofs for perfect equilibria, this implies the existence of symmetry-

invariant perfect equilibria (in G). So any ANF(�) has a symmetry-invariant perfect

equilibrium b, which also is a perfect equilibrium of � (Selten 1975): Remains to show that

b is weakly symmetry invariant in �: This can be restated as follows: Weakly symmetric

actions of personal players in � are symmetric in ANF (�) : Let r be a weak symmetry of

� and let r (a) = �a for a 2 Ah, �a 2 A�h; and h; �h 2 HnHi0 . The symmetry f of ANF (�)

from the proof of Theorem 4.7 then gives �� (h) = �h and rh (a) = �a:

[290]
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CHAPTER III

Super weak isomorphism of extensive games

This Chapter has been published as �André Casajus (2006): Super weak isomorphism

of extensive games, in: Mathematical Social Sciences 51, 107�116�. Unfortunately, the

published version contains a lot of misprints which appeared after proof-reading. The

margin notes indicate the �rst lines of the respective pages in the published version.

Abstract [107]

It is well-known that the normal form su¢ ces to determine some but not to determine

all sequential equilibria of a game in general. How much more structure does so? In

this addendum to Casajus (2003), we suggest the concept of super weak isomorphism

(SWI) as an attempt to answer this question. In contrast to weak isomorphism,

SWI is not sensitive to the structure of the chance mechanism and the assignment

of payo¤s to the individual terminal nodes. Yet, sequential equilibrium remains

invariant under SWI, i.e. the structural features preserved by SWI already determine

sequential equilibrium. In addition, SWI is generically equivalent to isomorphism of

the agent normal form for a larger set of games than weak isomorphism.

Key Words: Symmetry, Representation, Equivalence, Sequential equilibrium, Agent

normal form.

JEL classi�cation: C72.
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1. Introduction

There are games with the same agent normal (ANF) form but di¤erent sets of sequen-

tial equilibria (e.g. Kreps & Wilson 1982, Figures 2 and 13). Hence in general, the ANF

does not su¢ ce the determine all sequential equilibria of an extensive game. Generically,

however, it does so: Generically, sequential equilibrium coincides with perfect equilibrium

which can be de�ned via the ANF (Selten 1975). Kohlberg & Mertens (1986) show that the

normal form su¢ ces to �nd some of the sequential equilibria of an extensive game: Proper [108]

equilibria (Myerson 1978) of strategic games can be extended into sequential equilibria of

extensive games with that normal form.

Which part of the structure of extensive games su¢ ces to determine sequential equi-

librium? We employ isomorphism to characterize structural features: Isomorphic games

share the features implicit in the concept of isomorphism under consideration. For exten-

sive games, there are two such concepts, strong isomorphism (Elmes & Reny 1994, Peleg

et al. 1999) and weak isomorphism (WI) (Casajus 2003, henceforth CA031). In addi-

tion, the Harsanyi & Selten (1988) isomorphism of the ANF (ANF isomorphism) or of the

(reduced) normal form can be regarded as such concepts. The question then is whether se-

quential equilibrium is invariant under the isomorphism under consideration. Our leading

example reveals that ANF isomorphism is not such a concept.

Sequential equilibrium is invariant under strong isomorphism and WI. Yet, both con-

cepts keep (most of) the structure of extensive games. Can we do with less? We can. In

this paper, we relax WI into the concept of super weak isomorphism (SWI) which ignores

the structure of the chance mechanism while preserving the payo¤s of strategy pro�les.

This way, the generic equivalence of WI and ANF isomorphism extends to some subset

of games with a chance mechanism (Theorem 3.6). Nevertheless, sequential equilibrium

remains invariant under SWI (Theorem 3.7). To enable this, SWI must preserve the se-

quential structure beyond the ANF. This, however, seems to be in line with Govindan

& Wilson (2004) who �accept the relevance of extensive form analysis� and weaken the

reduced normal form invariance requirement of Kohlberg & Mertens (1986).

This note is organized as follows: Basic de�nitions and notation not found in CA03

are given in the next section. In the third one, we relax WI into SWI and explore its

properties. Some remarks conclude the note. The appendix contains some proofs.

2. Basic de�nitions and notation

We only give the de�nitions and notation not given in or deviating from CA03. In

order to avoid set theoretic complications, we assume that there is a set which contains all

1Also Chapter II of this thesis.
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labels for players, pure strategies, and nodes. This way, the collections of all games and

of all forms (strategic, extensive) are sets.

We set i0 = 0; I� = In f0g ; A� := AnA0; H� := HnH0: The reduced terminal history
of z 2 Z is the set A� (z) := A ( (z)) nA0: Further,

Z (a) := fz 2 Zj9a0 2 A0 : z = z (a;a0)g = fz 2 ZjA� (z) � fahjh 2 H�gg (2.1)

denotes the subset of Z reachable by a.

We denote by Enc � E the set of games with P0 = ;. An (extensive) form 
 is a tuple

(T;C; I; P;H;A) where the constituents are de�ned as in E . EF (EF*; EFnc) denotes the
set of forms corresponding to E (E*; Enc). Any � 2 E based on a �xed 
 2 EF can be

described by an assignment � = (u; p) 2 D (
) := U (
) �W (
) ; where U (
) := RjZjjI�j;
W (
) :=

Q
h2H0 �jAhj�1; u = (ui)i2I� ; ui 2 R

jZj; p = (ph)h2H0 ; ph 2 �jAhj�1; and where
�k � Rk+1; k 2 N denotes the k-dimensional standard simplex: We then write � = 
 (�).

A proposition on pairs of games from E 0 � E based on EF 0 � EF holds generically i¤ for

all 
0 2 EF 0 there is some open and dense subset D (
0) � D (
0) such that for all (
; �
) 2
EF 0 � EF 0 the proposition holds for all (
 (�) ; �


�
��
�
); � 2 D (
), �� 2 D (�
) :

[109]3. Super weak isomorphism

3.1. De�nitions. The following de�nition relaxes weak isomorphism by dropping its

conditions related to the chance mechanism (CPL, CPR) and by weakening the other
conditions accordingly. The latter is indicated by the pre�x �s�which should be read as
�superweak version of�. Non-technically, a super weak isomorphism is an isomorphism of

the ANF (sISA, sPY) that respects the assignment of information sets to players (sPL)
and therefore also is an isomorphism of the normal form, for example. In addition, it

preserves the RTH structure (sPTH).

Definition 3.1. A super weak isomorphism (SWI) from 
 2 EF to �
 2 EF is a

bijection r : A� ! �A� with the following properties: There are bijections � : H� ! �H�,

� : I� ! �I�; and a surjective and nowhere empty correspondence � : Z � �Z such that

sISA r(Ah) = �A�(h) for all h 2 H�;

sPL r(Ai) = �A�(i) for all i 2 I�,

sPTH r (A� (z)) = �A� (�z) for all z 2 Z and �z 2 �(z) :
A SWI from � 2 E to �� 2 E is a SWI of the underlying forms which satis�es

sPY for all i 2 I�; there are �i; �i 2 R; �i > 0 such that
�u�(i) (r (a)) = �iui (a) + �i for all a 2 A
where r = (r�h)�h2 �H� : A! �A; r�(h) (a) = r (ah) :
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SWI games, SWI invariant solution concepts and SWI invariant behavior-strategy

pro�les are de�ned in analogy to their WI counterparts. Obviously, r uniquely determines

the bijections � and �: In addition, sISA secures that the mapping r used in sPY is

well-de�ned and bijective. r is extended to behavior-strategy pro�les by CA03 (Equation

(3.2)).

3.2. Condition sPTH. RTH determine a possibly non-atomic partition [Z] of Z; [Z] :=
f[z] jz 2 Zg ; z0 2 [z] i¤ A� (z) = A� (z0) where [z] is called the terminal cell containing

z and A� ([z]) its RTH. Denote by [Z] (a) � [Z] the set of terminal cells reachable by a,
and by A ([z]) � A its converse, a 2 A ([z]) i¤ [z] 2 [Z] (a) :

The correspondence � from sPTH is unique in the following sense: By sPTH, we
have �A� (�z) = �A� (�z0) for �z; �z0 2 �(z) and �(z) \ �(z0) = ; if z0 =2 [z] : Since � is

surjective, r uniquely de�nes a bijection � : [Z]!
�
�Z
�
;

r (A� ([z])) = �A� (� ([z])) ; [z] 2 [Z] : (3.1)

In fact, sPTH and the existence of such a bijection � are equivalent, and we sometimes

refer to (3.1) by sPTH. Similar to WI, there is a characterization of sPTH for E* involving
�: Its proof is referred to the Appendix.

Lemma 3.2. (i) sISA and sPTH imply sPTH�:
�
�Z
�
(r (a)) = � ([Z] (a)) for all

a 2 A: (ii) In EF*; sISA and sPTH� imply sPTH.

3.3. SWI vs. weak isomorphism. The following theorem establishes the relation be- [110]

tween SWI and WI. Part (i) says that SWI weakens WI, and part (ii) says that, compared

with WI, SWI just disregards the structure of the chance mechanism. While part (i) is

immediate from CA03 (Lemma A.3), part (ii) follows from j[Z] (a)j = 1 and [z] = fzg for
� 2 Enc.

Theorem 3.3. (i) For any WI r : �! ��; the restriction to A� is a SWI rjA� : �! ��:

(ii) For �; �� 2 Enc, any SWI r : �! �� also is a WI.

The following example shows that SWI non-trivially weakens WI.2 Casajus (2005)

presents general constructions that yield SWI games: the spurious addition of chance

nodes and shifting the chance mechanism to the root. Also, alternative but equivalent

decompositions of a chance node�s lottery do not a¤ect SWI.

Example 3.4. Consider 
; �
 2 EF in Figure 3.1 where all information sets are con-

trolled by di¤erent players. In both forms, the root is the only chance node, and the

chance actions are non-redundant in the following sense. There is an information set that

follows a0 (�a0) but not a00 (�a
0
0). Consider the bijection r : A� ! �A�; a 7! �a for a 2 fL;

2I wish to thank an anonymous referee for suggesting to look for such an example.
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Figure 3.1. SWI forms that are not weakly isomorphic

R; `; r;�; P; �; �g. Obviously, this mapping satis�es sISA and sPL. In addition, it easy to
check that r satis�es sPTH via the bijection � : [Z]!

�
�Z
�
; � ([zk]) = [�zk] for k = 1; 2; 5; 6

and � ([z3]) = [�z7] ; � ([z4]) = [�z8] ; � ([z7]) = [�z3], � ([z8]) = [�z4] : Hence, r is a SWI from


 to �
: Yet, 
 and �
 cannot be WI: In 
; the action � and the action � are contained in

exactly one terminal history, and these terminal histories contain di¤erent chance actions,

a0 and a00; respectively. In contrast in �
; just the actions ��; ��; ��; and �P are contained

in exactly one terminal history where all these terminal histories contain the same chance

action, �a0:

3.4. SWI vs. ANF isomorphism. Obviously, any SWI r : � ! �� induces an iso-

morphism (�; (rjAh)h2H�) : ANF (�) ! ANF
�
��
�
where � is determined via sISA. The

converse, however, does not hold in general. Yet by Theorem 3.3, CA03 (Theorem 4.8)

also applies to SWI: For E* \ Enc; SWI and ANF isomorphism are generically equivalent. [111]

Even though SWI largely disregards the chance mechanism, the following example reveals

that this does not hold true for the whole set E*.

Example 3.5. Consider 
; �
 2 EF in Figure 3.2 where just the roots are chance nodes
(chance probabilities in brackets) and where the non-chance information sets are controlled

by di¤erent players. 
 and �
 are not SWI: While in 
 all RTH contain two actions, there

is singleton one in �
; �A� (�z1) =
�
�L
	
: Yet in the Appendix, we show that for all � 2 D (
)

there is some �� 2 D (�
) (and vice versa) such that 
 (�) and �

�
��
�
are ANF isomorphic,

contradicting genericity.

For SWI, CA03 (Theorem 4.8) can be extended to the set E reg (EF reg) of regular
games (forms). Let H� ([z]) denote the set of non-chance information sets corresponding

to A� ([z]) : A game (form) is called regular i¤ for all [z] ; [z0] 2 [Z] ; [z] 6= [z0] ; H� ([z]) \
H� ([z0]) 6= ; implies A ([z]) \A ([z0]) = ;; i.e., i¤ the RTH induced by the same strategy
pro�le do not intersect. Of course, regularity is a strong property. Since j[Z] (a)j = 1 in
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Figure 3.2. Non-SWI game forms

Enc; we have Enc � E reg: For example, we obtain regular forms by connecting the root of
two forms from EFnc with a chance node as the new root; the forms in Figure 3.2 are not
regular. The proof of the following Theorem is referred to the Appendix.

Theorem 3.6. In E*\Ereg, generically, any ANF isomorphism f = (�; (rh)h2H�) from
� to �� induces a SWI r : A� ! �A�, a 7! rV (a) (a) :

3.5. Invariance under SWI. Since SWI preserves the (agent) normal form, the argu-
ments for CA03 (Theorems 5.1 and 5.4) apply: SWI invariant perfect equilibria do always

exist. Moreover, solution concepts that are based on the �xed (agent) normal form are

SWI invariant, e.g. Nash and perfect equilibrium.

This argument does not work for sequential equilibrium because the Kreps & Wilson

(1982, Proposition 6) characterization involves a sequence of payo¤ functions of the ex-

tensive game. Nevertheless, sequential equilibrium remains invariant of under SWI. But

there are ANF isomorphic extensive games which are not SWI while any ANF isomorphism

establishes a bijection of the set of sequential equilibria. By arguments in the proofs to

Example 3.5 and of Theorem 3.7, one can show that the game forms in Figure 3.2 give

rise to such games. A proof of the following Theorem can be found in the Appendix.

Theorem 3.7. Sequential equilibrium is SWI invariant.

[112]4. Concluding remarks

In this note, we tried to answer the following question: Is it possible (via some concept

of extensive game isomorphism) both to keep as less information as enables this concept

and ANF isomorphism to be generically equivalent and to keep as much information as

needed for the determination of all sequential equilibria?
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Our answer is a partial one: For extensive games without chance mechanism, WI al-

ready does the job. SWI goes a little farther: Being equivalent to WI for games with

out chance mechanism, it relaxes WI for general games in a way such that sequential

equilibrium remains invariant. But even in spite of its disregard of the chance mechanism

to a large extent and of the players�detailed preferences over individual terminal nodes,

SWI makes only a small step towards generic equivalence which now extends to games

that satisfy a strong regularity requirement. Even generically, the presence of a chance

mechanism seems to enhance the structure of extensive games far beyond the ANF. Re-

mains the question whether SWI can be further relaxed towards generic equivalence to

ANF isomorphism without loosing the invariance of sequential equilibrium.
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Appendix A

Proof of Lemma 3.2. (i) [z] 2 [Z] (a), A� ([z]) � fahjh 2 H�g by (2.1),, r (A� ([z]))

� fr (ah) jh 2 H�g by bijectivity of r, , r (A� ([z])) �
�
r�(h) (a) jh 2 H�

	
by sPY,

, �A� (� ([z])) �
�
r�(h) (a) jh 2 H�

	
by (3.1), , �A� (� ([z])) � fr�h (a) j�h 2 �H�g by

bijectivity of r; , � ([z]) 2
�
�Z
�
(r (a)) by (2.1).

(ii) Let r be as in the Lemma. By sPTH�; r induces a bijection � : [Z]!
�
�Z
�
: Con-

sider a 2 A ([z]) and a 2 A� ([z]) : As � 2 E*, there is some a0 2 AV (a), a0 6= a: Consider

a0 2 A, a0V (a) = a0 and a0h = ah for h 6= V (a) : Obviously, [z] =2 [Z] (a0) : Suppose, r (a)
=2 �A� (� ([z])) : We then had �A� (� ([z])) �

�
r�h (a) j�h 2 �H�

	
n fr (a)g by sPY; sPTH�;

and (2.1), �
�
r�h (a

0) j�h 2 �H�
	
; i.e. � ([z]) 2

�
�Z
�
(r (a0)) by (2.1), contradicting sPTH�:

Hence, r (A� ([z])) � �A� (� ([z])) : Since the inverse r�1 satis�es sISA and sPTH�, the

converse inclusion is immediate.

Proof to Example 3.5. For all assignments � = (p; u) ; p 2 ]0; 1[ and uki := ui (zk) 2 R;
i 2 f1; 2; 3g ; k 2 f1; 2; : : : ; 8g there is an assignment �� = (�p; �u) ; �p 2 ]0; 1[ and �uki := �ui (�zk)
2 R; k 2 f1; 3; : : : ; 8g (and vice versa) such that r : A� ! �A�; a 7! �a (satisfying sISA)
induces an isomorphism ANF (
 (�))! ANF

�
�

�
��
��
; i.e. satis�es sPY. Just set p = �p, �u3i
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= u3i + �u
1
i � u1i ; �u

4
i = u4i + �u

1
i � u2i ; �u

5
i = u5i +

p
1�p

�
u1i � �u1i

�
; �u6i = u6i +

p
1�p

�
u2i � �u1i

�
;

�u7i = u7i +
p
1�p

�
u1i � �u1i

�
; �u8i = u8i +

p
1�p

�
u2i � �u1i

�
or uki = �uki for k 6= 2; and u1i = u2i ,

respectively.

Proof of Theorem 3.6. We denote by prob (z) :=
Q
a2A0\A( (z)) pV (a) (a) the probability [113]

that z 2 Z (a) is reached by a which gives

ui (a) =
X

z2Z(a)
prob (z)ui (z) =

X
[z]2[Z](a)

vi ([z]) i 2 I�;a 2 A (5.1)

where vi ([z]) :=
P

z02[z] prob (z
0)ui (z0) is called player i�s valuation of [z] : Since we wish to

prove a generic result within E*, we are allowed to focus on assignments with the following
properties: (*) For all i 2 I� and � : [Z]! f0;�1;�2g,

P
[z]2[Z] � ([z]) vi ([z]) = 0 implies

� ([z]) = 0 for all [z] 2 [Z] : (**) The players�preferences are pairwise di¤erent, i.e. there
is no positive a¢ ne transformation between the payo¤ functions of any two players.

Let f = (�; (rh)h2H�) be an isomorphism from ANF (�) to ANF
�
��
�
: The bijection r :

A� ! �A�; a 7! rV (a) (a) then satis�es sISA and sPY: By (**) and sPY, r induces the
bijection � : I� ! �I�; i (h) 7! �{ (� (h)) which satis�es sPL.

Remains show that there is a bijection � : [Z]!
�
�Z
�
that satis�es (3.1), hence sPTH.

Consider the correspondences Y : [Z]�
�
�Z
�
and �Y :

�
�Z
�
� [Z] ;

Y ([z]) := f[�z] 2
�
�Z
�
j �A� ([�z]) � r (A� ([z]))g (5.2a)

�Y ([�z]) := f[z] 2 [Z] jr (A� ([z])) � �A� ([�z])g (5.2b)

By (5.2), [�z] 2 Y ([z]) and [z0] 2 �Y ([�z]) imply r (A� ([z0])) � �A� ([�z]) � r (A� ([z])) ; hence

A� ([z0]) � A� ([z]). Regularity then implies [z0] = [z], hence r (A� ([z])) = �A� ([�z]) : I.e.,

if both Y and �Y are nowhere empty then both are single-valued and inverse to each other.

Thus, f� ([z])g = Y ([z]) determines the desired bijection �: In view of the bijectivity of r;

Y and �Y are de�ned symmetrically. Therefore, it su¢ ces to show Y ([z]) 6= ; for all [z] 2
[Z] : For H� ([z]) = H�; we have A ([z]) = fag and

�
�Z
�
(r (a)) � Y ([z]) : For H� ([z])

( H�, we proceed by a series of claims where the �rst one merely is a restatement of (2.1)

and last one implies Y ([z]) 6= ;:
Claim 1: [z] 2 [Z] (a) i¤ ah 2 A� ([z]) for all h 2 H� ([z]) :
Claim 2: [Z] (a0) � [Z] (a) implies [Z] (a0) = [Z] (a).

It su¢ ces to show that Z (a0) � Z (a) implies Z (a0) = Z (a) : For z� 2 Z (a) ; by (2.1),
there is some a�0 2 A0 such that z� = z (a;a�0) : We then have z (a

0;a�0) 2 Z (a0) � Z (a) ;

i.e. by (2.1), there is some a0 2 A0 such that z (a0;a�0) = z (a;a0) : By CA03 (Equation

(2.3)), we then have z (a0;a�0) = z (a;a�0) and therefore z
� 2 Z (a0) :

Claim 3: If (a) H� ([z])\H� ([z0]) = ; and (b) H� ([z])\H� ([z00]) 6= ; then (c) H� ([z0])
\H� ([z00]) = ;:
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Suppose on the contrary that [z] ; [z0] ; [z00] 2 [Z] satisfy (a) and (b) but not (c). Then
there are h 2 H� ([z]) and h0 2 H� ([z0]) that intersect  (z00) as close as possible to the

root, respectively. Set fxg := h\ (z00) and fx0g := h0\ (z00) :W.l.o.g. we assume x0 C x:

By the choice of h, there are a# 2 A ([z]) and
�
z#
�
2 [Z]

�
a#
�
such that x 2  

�
z#
�
: We

then have [z] ;
�
z#
�
2 [Z]

�
a#
�
and h 2 H� ([z]) \ H�

��
z#
��
. By x0 C x; we also have

h0 2 H�
��
z#
��
; and by (a), h0 =2 H� ([z]) ; hence [z] 6=

�
z#
�
; contradicting regularity.

Fix some [z] and a 2 A ([z]) : Since � 2 E*; there is some a� 2 A such that a�h 6= ah, [114]

h 2 H�: Setting

H�
� ([z]) :=

[
[z0]2[Z](a�):H�([z0])\H�([z]) 6=;

H�
��
z0
��
; (5.3)

we construct a�;a� 2 A as follows:

a�h =

8<: ah ; h 2 H� ([z])
a�h ; h 2 H�nH� ([z])

a�h =

8<: a�h ; h 2 H�
� ([z])

ah ; h 2 H�nH�
� ([z])

(5.4)

Claim 4: H�
� ([z]) 6= ;:

Suppose on the contrary, H�
� ([z]) = ;; i.e. by (5.3) there is no [z0] 2 [Z] (a�) such that

H� ([z0]) \H� ([z]) 6= ;: Then [Z] (a�) � [Z] (a�) by (5.4) and Claim 1 ; hence [Z] (a�) =

[Z] (a�) by Claim 2. By (5.4) and Claim 1, however, [z] 2 [Z] (a�) but [z] =2 [Z] (a�) : A
contradiction.

Claim 5: For all i 2 I�; ui (a)� ui (a�)� ui (a�) + ui (a�) = 0:
Set M1 := f[z]g ; M2 := [Z] (a) n f[z]g ; M3 := f[z0] 2 [Z] (a�) jH� ([z0]) � H�

� ([z])g;
and M4 := f[z0] 2 [Z] (a�) jH� ([z0]) \H�

� ([z]) = ;g: In the following, we show (i) [Z] (a)
=M1[M2; (ii) [Z] (a�) =M1[M4; (iii) [Z] (a�) =M3[M2; and (iv) [Z] (a�) =M3[M4:

By (5.1), this proves the claim.

By [z] 2 [Z] (a) ; (i) is immediate. By (5.3), either H� ([z0]) � H�
� ([z]) or H� ([z

0]) \
H�
� ([z]) = ; for [z0] 2 [Z] (a�) : This proves (iv). By (5.4) and Claim 1, we have M1 �

[Z] (a�) : If [z0] 2 [Z] (a�) nM1 then H� ([z0]) \ H� ([z]) = ; by regularity. Then (5.4),
(5.3), and Claim 1 imply [z0] 2 M4: This proves (ii). By (5.4), (5.3), and Claim 1, we

have M3 � [Z] (a�) : Together with regularity, we have H� ([z0]) � H�nH�
� ([z]) for [z

0] 2
[Z] (a�) nM3; hence [z0] 2 [Z] (a) =M1 [M2: Claim 4 and regularity imply [z0] 2M2; i.e.

[Z] (a�) nM3 �M2: If [z0] 2M2 and [z00] 2M3 then H� ([z0]) \H� ([z]) = ; by regularity,
and H� ([z00])\H� ([z]) 6= ; by de�nition ofM3. Claim 3 then implies H� ([z0])\H� ([z00])
= ;: Then, again by (5.4), (5.3), and Claim 1 , we have [z0] 2 [Z] (a�) nM3; hence M2 �
[Z] (a�) nM3 which proves (iii).

Claim 6:
�
�Z
�
(r (a)) \

�
�Z
�
(r (a�)) 6= ; where r is induced by r via sPY.
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By (5.2), (5.4), and Claim 1, we have Y ([z]) =
�
�Z
�
(r (a)) \

�
�Z
�
(r (a�)). Hence, the

claim shows Y ([z]) 6= ;: Suppose on the contrary,
�
�Z
�
(r (a)) \

�
�Z
�
(r (a�)) = ;: Consider

any [�z] 2
�
�Z
�
(r (a)) ; hence [�z] =2

�
�Z
�
(r (a�)) :

Suppose there is some �h0 2 �H� ([�z]) such that �h0 2 �
�
H�
� ([z])

�
: Then by (5.4) and

sPY, r�h0 (a) 6= r�h0 (a�) = r�h0 (a�) ; hence by Claim 1, [�z] =2
�
�Z
�
(r (a�)) ;

�
�Z
�
(r (a�)) : Since

r satis�es sPY, for all i 2 I� and a0 2 A there are �i; �i 2 R; �i > 0 such that �u�(i) (r (a0))
= �iui (a

0) + �i. Hence by Claim 5,

�u�(i) (r (a))� �u�(i) (r (a�))� �u�(i) (r (a�)) + �u�(i) (r (a�)) = 0: (5.5)

Express (5.5) by valuations according to (5.1). Since [�z] is contained in
�
�Z
�
(r (a)) only, the

coe¢ cient of �v
�{(�(h))

([�z]) is 1 while all other coe¢ cients are between �2 and 2; contradicting
(*), i.e. genericity.

Remains the possibility that �H� (�z) � �H�n�
�
H�
� ([z])

�
: Then by (5.4), Claim 1 ,

and sPY, [�z] 2
�
�Z
�
(r (a�)) ; hence

�
�Z
�
(r (a)) �

�
�Z
�
(r (a�)) (since [�z] was arbitrary)

and therefore
�
�Z
�
(r (a)) =

�
�Z
�
(r (a�)) by Claim 2. By Claims 4 and 5 ((i), (iii)), and

regularity, however, [Z] (a) 6= [Z] (a�) : Arguments similar to those for the other case show [115]

that this contradicts genericity.

Proof of Theorem 3.7. We denote by �� the mapping that assigns to b0 2 B0 the system
of beliefs �� (b0) associated with b0 according to Bayes� rule. Let (�; b) be a sequential

equilibrium of � 2 E : By Kreps & Wilson (1982, Proposition 6), there is a sequence�
bk; uk

�
, bk 2 B0; uk 2 RI��Z such that b = limk!1 bk; � = limk!1 ��

�
bk
�
; u =

limk!1 uk and uki
�
bib

k
�i
�
� uki

�
b0ib

k
�i
�
for all k 2 N; i 2 I�; and b0i 2 B:

Further, let r be a SWI from � to �� 2 E which induces bijections � : I� ! �I�; � :

H� ! �H�, � : [Z]!
�
�Z
�
; r : A! �A such that for all i 2 I� there are �i; �i 2 R; �i > 0

such that �u�(i) (r (a)) = �iui (a) + �i for all a 2 A. Since ��� is continuous, there is some
system of beliefs �� of �� such that limk!1 ��

� �r �bk�� = ��: We show that (��; r (b)) is a

sequential equilibrium.

Fix any payo¤ function � 2 RZ and consider the following system of linear equations

where the payo¤ function �� 2 R �Z is variable:

�� (r (a)) =
X

�z2 �Z(r(a))

prob (�z) �� (�z) =
X

z2Z(a)
prob (z) � (z) = � (a) a 2 A (5.6)

Let �� denote the correspondence RZ � R �Z which assigns to � the set �� (�) of solutions

of (5.6). Using Lemma 3.2 (i), one shows that �� (�) 2 R �Z ,

�� (�) (�z) :=

P
z2��1([�z]) prob (z) � (z)P

�z02[�z] prob (�z
0)

; �z 2 �Z
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satis�es (5.6). Hence, �� (�) is non-empty for all � 2 RZ : Moreover, the set �� (�) is an
a¢ ne subspace ��� + ��0 � R �Z where ��� 2 �� (�) and ��0 denotes the solution set of the

homogenous system associated with (5.6). Since the right side of (5.6) is continuous in �;
�� is continuous.

By assumption, we have �u�(i) 2 �� (�iui + �i) for all i 2 I�: Since limk!1 uki =

ui and �� is continuous, there is a sequence (�uk�(i))k2N; �u
k
�(i) 2 ��

�
�iu

k
i + �i

�
such that

limk!1 �u
k
�(i) = �u�(i): By (5.6) and (5.1), we then have �uk�(i) (r (a)) = �iu

k
i (a) + �i for all

a 2 A; i 2 I�; and k 2 N ; hence

�uk�(i) (r (b)) = �iu
k
i (b) + �i; b 2 B: (5.7)

Since r is continuous, limk!1 r
�
bk
�
= r (b) : Suppose there were some k 2 N, �{ 2 �I�,

�b0�{ 2 �B�{ such that

�uk�{

�
r
�
b��1(�{)b

k
���1(�{)

��
< �uk�{

�
�b0�{r��{

�
bk
��

where �b0�{r��{
�
bk
�
denotes the behavior strategy pro�le where all players follow r

�
bk
�
except

for �{ who follows �b0�{; analogously for b��1(�{)b
k
���1(�{): By (5.7) we then had

uk��1(�{)

�
b��1(�{)b

k
���1(�{)

�
< uk��1(�{)

�
r�1
��1(�{)

�
�b0�{
�
bk���1(�{)

�
with the interpretation of the arguments as above. Since this contradicts the assumptions [116]

on
�
bk; uk

�
, the sequence

�
r
�
bk
�
; �uk
�
establishes (��; r (b)) to be a sequential equilibrium.

Since the inverse r�1 also is a SWI, this proves the claim.
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CHAPTER IV

Strong agent normal form isomorphism

Abstract

Sequential equilibrium and quasi-perfect equilibrium are not invariant under isomor-

phism of the standard form. In this note, we advocate a concept of isomorphism for

extensive games which is generically equivalent to isomorphism of the agent normal

form and under which these solution concepts are invariant. Though this concept re-

lies on details of the extensive form, it is essentially weaker than other such concepts

as strong, weak, and super weak isomorphism.

Key Words: Equivalence, Invariance, Genericity, Sequential equilibrium, Quasi-

perfect equilibrium

JEL classi�cation: C72.

62



IV.1. INTRODUCTION 63

1. Introduction

It is well known that sequential rationality considerations in games already can be

made within the normal form: Proper equilibria (Myerson 1978) of the normal form induce

sequential equilibria (Kreps & Wilson 1982, henceforth SEQ) and quasi-perfect equilibria

(van Damme 1984, henceforth QPE) in every extensive form having this normal form.

Weakening the reduced normal form invariance requirement of Kohlberg & Mertens (1986),

however, Govindan & Wilson (2004) �accept the relevance of extensive form analysis�and

employ QPE in their axiomatic justi�cation of stable equilibria (Kohlberg & Mertens

1986). Moreover, Mertens (1995) argues that QPE seems to be the right combination

of admissability and backward induction. Hence, one might be interested in concepts of

isomorphism for extensive games under which QPE is invariant.

Consider the games in Figure 1.1 due to van Damme (1984) which both have the same

standard form (Harsanyi & Selten 1988) G below.

G

` r

L 1; 1 1; 1

R 1; 1 0; 0

Hence, the identity mapping on the action set establishes an isomorphism of the standard

form (Harsanyi & Selten 1988, henceforth SFI). Since this mapping switches the order

of information sets, QPE is not SFI invariant. While (R; `) is a QPE in �; it is not

so in ��. Despite its drawbacks, SEQ is frequently employed in applications because it

is easier to compute than perfect equilibrium (Selten 1975). As QPE, however, SEQ is

not SFI invariant (see e.g. Kreps & Wilson 1982, Figures 2 and 13). In contrast, perfect

equilibrium can be de�ned in terms of the agent normal form (Selten 1975, henceforth

ANF) and therefore is invariant under isomorphism of the ANF (ANFI). Yet, it shares a

major disadvantage with SEQ: It may put positive weight on (conditionally) dominated

strategies (Mertens 1995, Example 1). Hence, isomorphism concepts which genuinely rely

on the extensive form seem to be needed.

Successively weakening strong isomorphism (Elmes & Reny 1994, Peleg et al. 1999), we

introduced weak isomorphism (Casajus 2003, henceforth WI and CA031) and super weak

isomorphism (Casajus 2006, henceforth SWI and CA062) under which SEQ is invariant.

The latter note observes that ANFI and SWI are generically di¤erent (CA06, Example

3.5 and the proof) and then concludes with the question whether there is a concept of

isomorphism of extensive games which is generically equivalent to ANFI but under which

SEQ remains invariant.

1Also Chapter II of this thesis.
2Also Chapter III of this thesis.
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Figure 1.1. QPE is not invariant under isomorphism of the standard form

In this note, we propose such a concept, strong ANF isomorphism (strong ANFI),

which also preserves QPE. We depart from the observation that in our leading example

the identity mapping on the action set no longer is an ANFI if one slightly perturbs the

payo¤s. Basically, a strong ANFI is an ANFI which remains an ANFI under (slight)

perturbations of payo¤s.

Since this note is an addendum to CA03 and CA06, for expositional parsimony, we

rely on the de�nitions and notation provided there and just explain the most important

notation in the next section. The third one introduces the concept of strong ANFI and

explores its main properties. The concluding remarks relate the concepts of isomorphism

considered in this paper. The appendix contains one lengthier proof.

2. Notation

Assuming a large enough set which contains the labels of players, pure strategies,

and nodes, we consider the set E of �nite extensive games � with perfect recall and the
underlying set EF of extensive forms 
; i.e. extensive games without payo¤ functions and

chance probabilities. Enc denotes the set of games without chance mechanism and E*

denotes the set of games where jAhj > 1 for all h 2 H�: For 
 2 EF ; D (
) denotes the set
of assignments � = (u; p) of payo¤ functions u and chance probabilities p; 
 (�) denotes

the extensive game based on 
 and speci�ed by the assignment �: Associated with � 2 E
are the set I� of genuine players, the set H� of their information sets h; and the set A of

pure-strategy pro�les a; i (h) denotes the player who controls h:

An ANFI r from � to �� is system of bijections (�; (rh)h2H�) where � : H� ! �H�; rh :

Ah ! �A�(h) where Ah denotes the set of actions at h: Abusing notation, r also denotes

the induced bijections A! �A and B ! �B (CA03 eqs. (2.1) and (3.2)) which preserve the

player�s preferences. A SFI is an ANFI together with a bijection � : I� ! �I� such that
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� (Hi) = �H�(i) for all i 2 I�: Z (a) denotes the set of terminal nodes reached by a (CA06,
eq. (2.1)). We de�ne genericity as CA06 (Section 2).

3. Strong agent normal form isomorphism

Definition 3.1. A strong ANF isomorphism from � = 
 (�) to �� = �

�
��
�
; 
; �
 2 EF ,

� 2 D (
) ; �� 2 D (�
) is an ANFI r from � to �� such that there are neighborhoods U of �

in D (
) and �U of �� in D (�
) such that for all �� 2 U and ��� 2 �U there are �� 2 D (
) and
��
� 2 D (�
) such that r is an ANFI from 
 (��) to �


�
��
�� and r�1 is an ANFI from �


�
��
��

to 
 (��) :

Non-technically, a strong ANFI is an ANFI which remains an ANFI under slight per-

turbations of payo¤s and chance probabilities. Our leading example already reveals that

ANFI and its strong cousin do not coincide in general. Generically, however, both con-

cepts coincide. In a sense, the de�nition of strong ANFI already incorporates genericity

considerations. In view of the proof of the following theorem (referred to the Appendix),

one could sharpen the de�nition by dropping the restriction to neighborhoods of the as-

signments without loosing this property. The latter indicates that strong ANFI has all the

properties one would expect from an isomorphism: The identity on actions, the composite

of strong ANFI, and the inverse of a strong ANFI again is a strong ANFI.

Theorem 3.2. Generically, ANFI and strong ANFI coincide

The following Corollary sheds light on the relation between SWI and strong ANFI:

SWI is non-trivially stronger than strong ANFI. Part (i) is immediate from CA06 (Proof

of Theorem 3.12, eqs. (5.6�7)). CA06 (Example 3.5 and the proof) establishes a coun-

terexample for part (ii). Since strong isomorphism and WI imply SWI (CA03, Section

3.3; CA06, Theorem 3.3), the theorem can be extended to strong isomorphism and WI.

Corollary 3.3. (i) Any SWI is a strong ANFI. (ii) The converse may fail, even

generically.

By similar arguments (see CA03, proof of Theorem 4.8, (A.1)) and CA06 (Theorem

3.3), we have a limited converse of Corollary 3.3(i). Note that CA03 (Example 3.4)

establishes a counterexample for EnE*:

Corollary 3.4. For Enc \ E*; strong ANFI, SWI, and WI coincide generically.

Since ANFI is not sensitive to the assignment of information sets to players, it may

not imply SFI or (reduced) normal form isomorphism in non-generic cases (see CA03, pp.

281, for an example). Generically, however, this holds true because generically the players�

preferences are pairwise di¤erent and ANFI preserves these preferences (see CA03, proof of
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Theorem 4.8). As strong ANFI is insensitive to slight perturbations of the players payo¤s,

it is sensitive to the assignment of information sets to players. This implies the following

Lemma.

Lemma 3.5. Any strong ANFI r : � ! �� induces a bijection � : I� ! �I� such

that � (Hi) = �H�(i) for all i 2 I�; hence an isomorphism of the standard forms and the

(reduced) normal forms.

As strong ANFI strengthens ANFI, CA06 (Section 3.5) also applies to strong ANFI.

While Nash equilibrium is not invariant under ANFI, not even generically, Lemma 3.5

indicates that Nash equilibrium is strong ANFI invariant. Unsurprisingly, subgame perfect

equilibrium is not invariant under strong ANFI. In contrast, the sequence characterization

of SEQ (Kreps & Wilson 1982, Proposition 6) and arguments in CA06 (Proof of Theorem

3.7) imply that SEQ is so.

Since we consider games with perfect recall, the information sets of a player are par-

tially ordered. For i 2 I�; h; h0 2 Hi; we write h C h0 i¤ for all (equivalently, some) x0 2 h0

there is some xx0 2 h such that xx0 C x0. Let Hh
i := fh0 2 Hijh C h0 _ h = h0g denote

the set comprising h itself and all h0 2 Hi that come after h: The following Lemma shows

that strong ANFI, other than SFI, preserves this order. It is the main ingredient in the

subsequent proof of QPE being strong ANFI invariant.

Lemma 3.6. If r = (�; (ri)i2I�) is a strong ANFI from � to �� then (i) for all i 2 I�
and h; h0 2 Hi, we have h C h0 i¤ � (h) C � (h0) and (ii) �

�
Hh
i

�
= �H

�(h)
�(i) where � : I�

! �I� is determined by Lemma 3.5.

Proof. Let r be as in the Lemma. Fix i 2 I�, h; h0 2 Hi, such that h C h0: By perfect

recall, there is some ah0 2 Ah that comes before all nodes in h; i.e. ' (x) \ ah0 6= ; for all
x 2 h0: Hence if ah0 is chosen with a probability of 0 then changes of the local strategy at
h0 do not a¤ect the payo¤s because then h0 is not reached. I.e., for all b 2 B0 and ah0 6= a

2 Ah, we have
u
�
a0; a; bH�nfh;h0g

�
= u

�
a00; a; bH�nfh;h0g

�
:

for all a0; a00 2 Ah0 ; where the subscripts at b indicate restrictions to the respective subset.
Suppose we had � (h) 6 � (h0) : Then, � (h0) is reached under r

�
a0; a; bH�nfh;h0g

�
and

r
�
a00; a; bH�nfh;h0g

�
: By Section 2 and CA03 (eqs. (2.1) and (3.2)), we then had

�u
�
r
�
a0; a; bH�nfh;h0g

��
= �u

�
r
�
a00; a; bH�nfh;h0g

��
;

even under (small) perturbations of �u at some � (h) 3 �x C �z 2 �Z; contradicting r to be a

strong ANFI. Claim (i) then follows from the fact that the inverse of a strong ANFI is a

strong ANFI. Claim (ii) is an immediate consequence of claim (i).
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Remark 3.7. From the original de�nition (van Damme 1984, De�nition 1) it is im-

mediate that QPE can be characterized as follows: A behavior-strategy pro�le b is a QPE

if there is a sequence (bk)k2N, bk 2 B0; limk!1 bk = b such that

ui

�
bHh

i
bk
H�nHh

i

�
� ui

�
b0
Hh
i
bk
H�nHh

i

�
for all i 2 I�; h 2 Hi; and b0i 2 Bi:

Theorem 3.8. QPE is invariant under strong ANFI.

Proof. Let r = (�; (ri)i2I�) be a strong ANFI from � to ��. By Theorem r is a SFI, i.e.

there is a bijection � : I� ! �I� such that � (Hi) = H�(i) for all i 2 I�: Let b be a QPE of
�: Then there is sequence

�
bk
�
k2N as in Remark 3.7. Since r : B ! �B is continuous and

both B and �B are compact, the sequence
�
r
�
bk
��
k2N, r

�
bk
�
2 �B0 converges to r (b) : By

Section 2 and CA03 (eqs. (2.1) and (3.2)) and by Lemma 3.6, this sequence also satis�es

the characterization of QPE in Remark 3.7.

This Theorem can be extended to all stronger concepts of isomorphism. By CA03

(Section 3.3), CA06 (Theorem 3.3(i)), and Theorem 3.4, we have the following Corollary.

Corollary 3.9. QPE is invariant under strong isomorphism, WI, and SWI.

4. Concluding remarks

Figure 3.1 summarizes the relation between the di¤erent concepts of isomorphism of

extensive games. For the obvious reasons, we restrict attention to the set E*. We write stI
for strong isomorphism, stANFI for strong ANF isomorphism, and NFI for isomorphism
of the normal form. Equivalent concepts are framed. Implications which are not indicated

do not hold in general.

In the most general case, the upper left entry, strong ANFI is the weakest concept

of isomorphism of extensive games under which SEQ and QPE are invariant. Hence,

strong ANFI seems to identify that part of the sequential structure of an extensive game

which enables us to apply considerations of sequential rationality in a comprehensible way.

Nevertheless, quite often, it will be easier to work with SWI, for example.

Appendix

Proof of Theorem 3.2. For all 
 2 EF , u 2 U (
) ; and i 2 I�; set umaxi := maxa2A ui (a)

and umini := mina2A ui (a) : We then are allowed to restrict attention to D 6= (
) := f(u; p)
2 D (
) j8i 2 I� : umaxi 6= umini g which is open and dense in D (
) : Consider the payo¤
normation � : D 6= (
)! D 6= (
) ; (u; p) 7! (�u; p) given by

�ui (z) =
ui (z)� umini

umaxi � umini

; i 2 I�; z 2 Z (4.1)
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E* E* \ Enc

general

stI

+
CA03
Sec. 3 .3

WI NFI

+
CA06

Thm . 3.3 (i) *

SWI
CA06
Def. 3 .1

) SFI

+ Cor. 3 .3 +

stANFI
Def. 3 .1

) ANF

stI

+
WI NFI

m
CA06

Thm . 3.3 (ii) *
SWI ) SFI

m Cor. 3 .4 +
stANFI ) ANF

generic

stI

+
WI NFI

+ *
SWI ) SFI

+ m Lem . 3.5

stANFI
Thm . 3.2

, ANFI

stI

+
WI NFI

m *
SWI , SFI

m m
stANFI , ANFI

Figure 3.1. Relation between concepts of isomorphism for extensive games

which implies

min
a2A

�ui (a) = 0 and max
a2A

�ui (a) = 1 ; i 2 I�: (4.2)

Since � is a system of positive a¢ ne transformations, r is a (strong) ANFI from 
 (� (�))

to �

�
�
�
��
��
i¤ r is a (strong) ANFI from 
 (�) to �


�
��
�
: Let �D 6= (
) denote the image of

� : Since � also is continuous, the counterimage of any open and dense subset of �D 6= (
)
is open and dense in D 6= (
) and D (
). Therefore, we are allowed to restrict attention to
the sets �D 6= (
) :

For any 
 2 EF consider the subset

D (
) :=
(
(u; p) 2 �D 6= (
) j8� 2 ZZ ; � 6= 0 :

X
z2Z

� (z) prob (z)ui (z) 6= 0
)
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of �D 6= (
) where ZZ denotes the set of mappings from Z into the integers and 0 2 ZZ ,
0 (z) = 0; z 2 Z: Since ZZ is countable, D (
) is open and dense in �D 6= (
) :

Let r = (�; (ri)i2I�) be an ANFI from 
 (u; p) to �
 (�u; �p) ; (u; p) 2 D (
) and (�u; �p) 2
D (�
) : By Section 2 and CA03 (eqs. (2.1) and (3.2)) and in view of (4.2), we then have

�u�{(�(h)) (r (a)) = ui(h) (a) ;a 2 A; h 2 H�: (4.3)

Enumerate A and �A such that r
�
a(k)

�
= �a(k): Further, enumerate Z and �Z: Consider the

jAj � jZj and
���A��� �� �Z�� matrices � = (�ij) and �� = ���ij� ; respectively, given by

�ij =

8<: 1; z(j) 2 Z
�
a(i)
�
;

0; ; z(j) =2 Z
�
a(i)
�
;

and ��ij =

8<: 1; ; �z(j) 2 �Z
�
�a(i)
�
;

0; ; �z(j) =2 Z
�
�a(i)
�
:

(4.4)

It is easy to see that there is a regular
���A��� ���A�� matrix �C with integer entries such that

�C �� is in row echelon form where the leading non-zeros may di¤er from 1: Then in �C ��;

the last
���A��� rank ���� rows are zero.

Given this, by CA06 (eq. (5.1)), (4.3) can be written as

���v�{(�(h)) = �vi(h) ; h 2 H�; (4.5)

where vi(h) 2 RZ ; �v�{(�(h)) 2 R
�Z , vi(h) (z) = prob (z)ui(h) (z), z 2 Z; and �v�{(�(h)) (�z) =

prob (�z) �u�{(�(h)) (�z) : Hence, the systems of linear equations in x 2 R
�Z

��x = �vi(h) ; h 2 H� (4.6)

have a solution. From the theory of systems of linear equations, we then know that

rank
�
��
�
= rank

�
�� �vi(h)

�
: (4.7)

If the jth row of �C �� is zero then by (4.7) the jth entry of �C�vi(h) is zero too. Since (u; p)

2 D (
) and since in �C� all entries are integers, the jth row of �C� also is zero which

implies that (4.7) holds for arbitrary vi(h): Hence, (4.6) has a solution for all vi(h) 2 RZ ;
i.e. (4.3) holds for arbitrary (u; p) 2 D (
) and some (�u; �p) 2 D (�
) : Since r�1 also is an
ANFI, the opposite direction is immediate. Hence, generically, any ANFI is strong.

References

Casajus, A. (2003). Weak isomorphism of extensive games, Mathematical Social Sciences 46(3): 267�290.

Casajus, A. (2006). Super weak isomorphism of extensive games, Mathematical Social Sciences 51(1): 107�

116.

Elmes, S. & Reny, P. J. (1994). On the strategic equivalence of extensive form games, Journal of Economic

Theory 62(1): 1�23.

Govindan, S. & Wilson, R. (2004). Axiomatic justi�cation of stable equilibria, University of Iowa and

Stanford University.

Harsanyi, J. C. & Selten, R. (1988). A General Theory of Equilibrium Selection in Games, MIT Press,

Cambridge, MA.



IV. References 70

Kohlberg, E. & Mertens, J.-F. (1986). On the strategic stability of equilibria, Econometrica 54(5): 1003�

1037.

Kreps, D. M. & Wilson, R. (1982). Sequential equilibria, Econometrica 50(4): 863�94.

Mertens, J.-F. (1995). Two examples of strategic equilibria, Games and Economic Behavior 8: 378�388.

Myerson, R. B. (1978). Re�nements of the Nash equilibrium concept, International Journal of Game

Theory 7(2): 73�80.

Peleg, B., Rosenmüller, J. & Sudhölter, P. (1999). The canonical extensive form of a game form: Sym-

metries, in A. Alkan, C. Aliprantis & N. Yannelis (eds), Current Trends in Economics: Theory and

Applications, Springer, pp. 367�387.

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games,

International Journal of Game Theory 4(1): 25�55.

van Damme, E. (1984). A relation between perfect equilibria in extensive form games and proper equilibria

in normal form games, International Journal of Game Theory 13: 1�13.



Part 2

Outside options and communication
restrictions in TU games



CHAPTER V

Outside options, component e¢ ciency, and stability

This chapter has been published �André Casajus (2009): Outside options, component

e¢ ciency, and stability, in: Games and Economic Behavior 65 (1), 49�61�. The margin

notes indicate the �rst lines of the respective pages in the published version.

Abstract [49]

In this paper, we introduce a component e¢ cient value for TU games with a coalition

structure which re�ects the outside options of players within the same structural

coalition. It is based on the idea that splitting a coalition should a¤ect players who

stay together in the same way. We show that for all TU games there is a coalition

structure that is stable with respect to this value.

Key Words: TU game, partition function form game, outside option, splitting, coali-

tion structure, stability

JEL classi�cation: C71
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1. Introduction

Consider a gloves game (Shapley & Shubik 1969) with two left-glove holders and four

right-glove holders (players) where the worth of a coalition is the number of right-hand-left-

hand pairs (matching pairs) it contains. Suppose the players have formed two matching

pairs with the two remaining right-glove players unattached. How should the players in a

matching-pair coalition split the worth of 1?

One well known way to divide the total worth of a set of players in a game is to assign

each player his Shapley (1953) value. The Shapley value, however, does not take into

account coalition structures. In order to �ll this gap, a number of values for TU games

with a given coalition structure (henceforth CS-values and CS-games) have been proposed:

In their pioneering work, Aumann & Drèze (1974) introduce a component e¢ cient CS-

value (henceforth AD-value) where the payo¤s depend on a player�s own coalition only. In [50]

contrast, the Owen (1977) value is e¢ cient and sensitive to how the players outside ones

own coalition are organized. Table 1.1 lists the payo¤s for the leading example.

AD-value

Owen value
Wiese value Shapley value �-value core

left with right : 5000 : 7167 : 7333 : 8000 1

right with left : 5000 : 2833 : 1333 : 2000 0

single right 0 0 : 1333 0 0

Table 1.1. Payo¤s for the gloves game

Interestingly, both the AD-value and the Owen value split the worth of 1 equally

between the members of a matching-pair coalition, i.e., these values are insensitive to

outside options which in the present context means that they do not respond to the

relative scarcity of the left gloves. However, outside options might be important:

Any particular alliance describes only one particular consideration which enters the

minds of the participants when they plan their behavior. Even if a particular al-

liance is ultimately formed, the division of the proceeds between the allies will be

decisively in�uenced by the other alliances which each one might alternatively have

entered. [...] Even if [...] one particular alliance is actually formed, the others are

present in �virtual�existence: Although they have not materialized, they have con-

tributed essentially to shaping and determining the actual reality. (von Neumann &

Morgenstern 1944, p. 36)



V.1. INTRODUCTION 74

During the course of negotiations there comes a moment when a certain coalition

structure is �crystallized�. The players will no longer listen to �outsiders�, yet

each coalition has still to adjust the �nal share of its proceeds. (This decision may

depend on options outside the coalition, even though the chances of defection are

slim). (Maschler 1992, pp. 595)

In contrast to the AD- and the Owen value, the unique CS-game core payo¤s (Aumann

& Drèze 1974) give the whole worth of 1 to the left-glove players; the core neglects the

productive role of a right-glove player within a given matching-pair coalition. Only re-

cently, Wiese (2007) suggested another component e¢ cient CS-value which steers a course

between these extreme positions. This can be seen from the Wiese payo¤s listed in Table

1.1. On the one hand, the payo¤ of a left-glove player is higher than that of the right-glove

player in his coalition; the Wiese value accounts for outside options. On the other hand,

a right-glove player in a matching-pair coalition obtains a higher payo¤ than the single

right-glove players; the Wiese value recognizes the productive role of right-glove players

in the matching-pair coalitions.

Nevertheless, the Wiese value has some drawbacks. Most notably, it lacks a �nice�

axiomatization. In essence, there is a non-intuitive ad-hoc speci�cation of the payo¤s for

unanimity games which is expanded by linearity to the whole class of games (see Section

3). Further, it is not yet clear whether there are stable coalition structures (in the sense

of Hart & Kurz 1983) with respect to the Wiese value for all TU-games.

In order to remedy these de�ciencies, we introduce a component e¢ cient CS-value� the

�-value. The main idea underlying the �-value is that splitting a structural coalition a¤ects

players who remain together in the same structural coalition in the same way. Besides

additivity and component restricted symmetry, we adhere to the Null player axiom for

the grand coalition. These axioms uniquely characterize the �-value which easily can be [51]

computed from the Shapley value. Further, it turns out that stable coalition structures

with respect to the �-value exist for all TU games. The �-payo¤s for our leading example

in Table 1.1 indicate that the �-value balances outside options and the contribution to ones

own coalition. Finally, recent experiments within the framework of gloves games indicate

that the �-value allows for better predictions on the outcome of bargaining between a

left-glove holder and a right-glove holder on splitting the worth of a matching pair than

the Wiese value (Pfau 2007).

The paper is organized as follows: Basic de�nitions and notation are given in the next

section. In the third one, we discuss axioms for CS-games. The �-value is introduced in the

fourth section. In the �fth section, the relation between the �-value and the Wiese value is

explored. The sixth section establishes the general stability results. In the seventh section,

the �-value and �-stability are applied to a range of games. Some remarks conclude the

paper.
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2. Basic de�nitions and notation

A (TU) game is a pair (N; v) consisting of a non-empty and �nite set of players N

and the coalition function v : 2N ! R; v (;) = 0: v (K) is called the N and the coalition

function v : 2N ! R; v (;) = 0: v (K) is called the N and the coalition function v : 2N

! R; v (;) = 0: v (K) is called the worth of K � N . For ; 6= T � N; the game (N;uT ),

uT (K) = 1 if T � K and uT (K) = 0 otherwise, is called a unanimity game. A value is an

operator ' that assigns payo¤ vectors to all games, ' (N; v) 2 RN : A coalition structure
for (N; v) is a partition P � 2N where P (i) denotes the cell containing player i: In general,
subsets of N are called coalitions; elements of P are referred to as structural coalitions

(components). A partition P 0 � 2N is �ner than P � 2N if P 0 (i) � P (i) for all i 2 N:

A CS-game is a game together with a coalition structure, (N; v;P) : The sum v + v0 of

two coalition functions on N is given by (v + v0) (K) = v (K) + v0 (K) for all K � N: A

CS-value is an operator ' that assigns payo¤ vectors to all CS-games, ' (N; v;P) 2 RN :
For K � N; we denote by 'K (N; v;P) the sum

P
i2K 'i (N; v;P) :When it is clear which

game is meant, we sometimes drop the argument of the value operator.

An order of a set N is a bijection � : N ! f1; : : : ; jN jg with the interpretation that i
is the � (i)th player in �. The set of these orders is denoted by � (N) : The set of players

not after i in � is denoted by Ki (�) = fj : � (j) � � (i)g : The marginal contribution of i
in � is de�ned asMCi (�) := v (Ki (�))�v (Ki (�) n fig) : A player i is called a Null player
i¤ v (K [ fig) = v (K) for all K � N: Players i; j are called symmetric if v (K [ fig) =
v (K [ fjg) for all K � Nn fi; jg : Player i dominates player j if v (K [ fig) � v (K) �
v (K [ fjg) � v (K) for all K � Nn fi; jg and the inequality is strict for some K: The
Shapley value, Sh; is de�ned as the average marginal contribution over all orderings of

players, Shi (N; v) = j� (N)j�1
P

�2�(N)MCi (�) : Since this de�nition does not make use

of the players�names, the Shapley value satis�es the following strong symmetry axiom

SS: A bijection � : N ! N is called a symmetry of (N; v) i¤ v (K) = v (� (K)) for all

K � N: Then, we have Shi (N; v) = Sh�(i) (N; v) for all symmetries � of (N; v).

3. Axioms for CS-values

In this section, we discuss a range of axioms with respect to the desired properties of

the CS-value to be introduced.

Axiom 3.1 (Additivity, A). ' (N; v + v0;P) = ' (N; v;P)+' (N; v0;P) for all coalition
functions v; v0:

This is a powerful standard axiom. It is among the Shapley axioms as well as among [52]

the axioms for the AD-value, the Owen value, and the Wiese value. So, A does not seem

to be in con�ict with outside options. For a motivation of this axiom, we refer to Roth

(1977), for example.
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Axiom 3.2 (Component restricted symmetry, CS). If i; j 2 N are symmetric and

j 2 P (i) and then 'i (N; v;P) = 'j (N; v;P) :

CS-values should be insensitive to the labelling of players. This is expressed with

the following symmetry axiom SCS which takes into account the coalition structure: A
symmetry of (N; v;P) is a symmetry � of (N; v) such that � (P (i)) = P (� (i)) for all i:
For all i and all symmetries � of (N; v;P), 'i (N; v;P) = '�(i) (N; v;P). Therefore, CS
as a relaxation of SCS should be satis�ed. For example, Hart & Kurz (1983) employ an

axiom like SCS in their axiomatization of the Owen value.

Axiom 3.3 (Component e¢ ciency, CE). For all i 2 N; 'P(i) (N; v;P) = v (P (i)) :

This axiom indicates that the components are the productive units; the players within

a component cooperate in order to produce that component�s worth. CE is also met

by the AD-value and the Wiese value as well as by the approaches of Myerson (1977)

and Shenoy (1979), for example. In contrast, the Owen value satis�es e¢ ciency within

the grand coalition, 'N (N; v;P) = v (N) ; which we call axiom E. This corresponds to
interpreting the components as bargaining blocs which bargain on the distribution of the

grand coalition�s worth.

Axiom 3.4 (Null player, N). If i 2 N is a Null player then 'i(N; v;P) = 0:

While the Shapley value as well as the AD- and the Owen value satisfy N; the Wiese
value violates this axiom. Yet, N together with CE may make a CS-value insensitive to
outside options. To see this, consider the unanimity game (N;uT ) where N = f1; 2; 3g
and T = f1; 2g together with the coalition structure P = ff1g ; f2; 3gg. Since 3 is a Null
player, we have '3 = 0; and by CE, '2 + '3 = 0; and therefore '2 = 0: Yet, player 2 has
an outside option to create the worth 1 together with player 1: Therefore, one could argue

that payer 2 should obtain a higher payo¤ than player 3: Hence for our purpose, N seems

to be too strong.

Several alternatives to the Null player axiom have been proposed. For the class of

simple games, Napel &Widgren (2001) de�ne so-called inferior players who form a superset

of the set of Null players. All inferior players get the payo¤ 0 according to their Strict

Power Index, a close relative of the Banzhaf index. Nowak & Radzik (1994) present a

solidarity value where Null players in unanimity games obtain a positive payo¤. Since

Null players obtain a non-negative payo¤ under these values, the same objections as for

N apply.

Axiom 3.5 (Grand coalition Null player, GN). If i 2 N is a Null player then 'i(N; v;

fNg) = 0:
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In the grand coalition, there are no outside options. Hence for P = fNg ; N should be

satis�ed. Note that GN together with CE, CS, and A characterizes the Shapley value

for P = fNg, while N together with CE, CS, and A characterizes the AD-value.

Axiom 3.6 (Component restricted dominance, CD). If i 2 N dominates j 2 P (i) then
'i (N; v;P) > 'j (N; v;P) :

This axiom seems to capture the idea that outside options as well as contributions to [53]

ones own coalition matter in a very weak sense. Therefore, our CS-value should satisfy

CD. However, CD and CE together are incompatible with N. Reconsider the CS-game
(N;uT ;P) as above. Player 3 is dominated by player 2: By CD, we then have '2 > '3;

and by CE, '2 + '3 = 0; hence, 0 > '3; a Null player may obtain a negative payo¤.

Note that this is also possible for the Wiese value. At �rst glance, this seems to be odd.

Player 3 could avoid this negative payo¤ by forming a singleton coalition. Yet, this does

not speak against CD or the Wiese value but against the coalition structure P to evolve
or� in other words� against P being stable. We have to distinguish between the payo¤s

for a (hypothetically) given coalition structure and the payo¤s under a stable coalition

structure that might or might not exist. Within a stable coalition structure, of course, a

Null player should obtain a non-negative payo¤ (see Corollary 6.3).

Axiom 3.7 (Component independence, CI). If P (i) = P 0 (i) ; i 2 N then 'i (N; v;P)
= 'i (N; v;P 0) :

This axiom says that way the players outside ones own component are organized does

not a¤ect ones own payo¤. At �rst glance, this does not seem to be a good axiom for

a CS-value, in particular for one which is intended to account for outside options. Yet,

even though the Wiese value satis�es CI, it accounts for outside options. Moreover, this
axiom is justi�ed if one maintains the view that the players produce their components�

worth which in TU games does not depend on the whole coalition structure. Further,

outside options come into play when the coalitions ultimately have been formed, i.e. the

players do not consider to change their coalition. Therefore, the players are not necessarily

restricted to the actual coalition structure when they bargain within their component on

the distribution of that component�s worth. Compare Maschler (1992, pp. 595) cited in

the Introduction. Besides, CI is an advantage of a CS-value concerning stability issues
which are explored in Section 6.

Axiom 3.8 (Outside option, OO). For all P 2 P and ; 6= T � N; we have 'PnT (N;uT ;P)
= 0 if jP (T )j = 1 and

'PnT (N;uT ;P) = �
jP \ T j
jT j

jPnT j
jP [ T j

if jP (T )j > 1; where P (T ) := fP (i) jP (i) \ T 6= ;g.
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This axiom replaces the Null player axiom in the axiomatization of the Wiese (2007)

value. Together with A; (in fact, Wiese employs linearity which can be relaxed into A),
CE, and CS; OO characterizes the Wiese value. However, this axiom has not too much

intuitive appeal. In essence, OO (together with CE and CS) determines the payo¤s for
unanimity games in a way such that the de�nition via marginal contributions (see Section

5) is met.

Axiom 3.9 (Splitting, SP). If P 0 is �ner than P then for all i 2 N and j 2 P 0 (i) ; we
have

'i (N; v;P)� 'i
�
N; v;P 0

�
= 'j (N; v;P)� 'j

�
N; v;P 0

�
:

We feel that this axiom is much more appealing than OO. It can be paraphrased
as follows: Splitting a structural coalition a¤ects all players who remain in the same

structural coalition in the same way. As the value is already meant to re�ect the outside

options of the players, one could argue that the gains/losses of splitting/separating should

be distributed equally within a resulting structural coalition. As it turns out, SP �lls the [54]

gap concerning uniqueness issues which arises when N is relaxed into GN.

In a di¤erent setting, Myerson (1977) employs a similar axiom. Instead of partitions,

he considers undirected graphs on the player set. The related fairness axiom requires that

connecting two players� other things being equal� changes these players�payo¤s by the

same amount. The resulting value, however, is very di¤erent from ours. For completely

connected components, the Myerson value and the AD-value coincide. Moreover, Slikker &

van den Nouweland (2001, p. 93) suggest an axiom for CS-values that somewhat resembles

SP but which together with CE characterizes the AD-value.

4. The �-value

In this section, we show that some of the axioms advocated in the previous section

already characterize a CS-value which satis�es the remaining such axioms. Further, we

determine the payo¤s for unanimity games and demonstrate that this CS-value accounts

for outside options.

Theorem 4.1. There is a unique CS-value that satis�es CE, CS, A, GN, and SP.

Proof. Let ' be a value that satis�es CE, CS, A, GN, and SP. Since the �rst four
axioms are the Shapley ones for P = fNg, we have 'i (N; v; fNg) = Shi (N; v). By

SP,4.2 we have

'i (N; v;P)� Shi (N; v) = 'j (N; v;P)� Shj (N; v) (4.1)

for j 2 P (i) : Summing up (4.1) over j 2 P (i) gives

jP (i)j ('i (N; v;P)� Shi (N; v)) = v (P (i))� ShP(i) (N; v)
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by CE. Hence,

'i (N; v;P) = Shi (N; v) +
v (P (i))� ShP(i) (N; v)

jP (i)j : (4.2)

The CS-value de�ned by (4.2) inherits CS and A from the Shapley value. For P = fNg ;
this CS-value actually is the Shapley value, hence satis�esGN. Finally, CE and SP follow
from simple calculations.

We call this CS-value �the �-value�. It employs the Shapley value as a yardstick to

distribute the payo¤ within a structural coalition. The di¤erence of a player�s payo¤ from

the average payo¤ of his structural coalition equals the di¤erence between his Shapley

payo¤ and the average Shapley payo¤ of his structural coalition. In other words, the

players within a structural coalition depart from their Shapley payo¤s and then compare

the worth of the coalition with the sum of the Shapley payo¤s; the di¤erence, positive

or negative, is distributed equally. Hence, whenever the Shapley payo¤s are component

e¢ cient, the �-value coincides with the Shapley value. This can be paraphrased as that

the Shapley value re�ects outside options �up to component e¢ ciency�.

From (4.2), it is immediate that the �-value satis�es CI. Since Shi (N; v) > Shj (N; v)
whenever i dominates j, (4.2) also implies �i (N; v;P) > �j (N; v;P) if j 2 P (i) : Hence,
the �-value satis�es CD.

The AD-value and the Owen value can be characterized by auxiliary games. So can

the �-value. Given a CS-game (N; v;P), we construct an auxiliary game (P; vP ) for every
structural coalition P 2 P. Basically, this game is the inessential game which is generated
by assigning the Shapley payo¤ to the singleton coalitions fig. The only deviation is the [55]

grand coalition P of (P; vP ) which is assigned its worth v (P ) ; i.e. vP (K) = ShK (N; v)

if K ( P and vP (P ) = v (P ) : With probability jP j�1, player i 2 P is the last player for

some order in � (P ) : In this case, i�s marginal contribution is v (P ) � ShPnfig (N; v) : As
the game is inessential elsewhere, with probability 1� jP j�1 ; i�s marginal contribution is
the Shapley payo¤ Shi (N; v) : By (4.2), we then have Shi

�
P (i) ; vP(i)

�
= �i (N; v;P) :

The unanimity games (N;uT ;P) form a basis of the linear space of games based on

�xed N and P: Therefore, the �-payo¤s for these games are of particular interest. One
easily checks that

�i (N;uT ;P) =

8>>>>><>>>>>:

1
jT j ; i 2 T; jP (T )j = 1;
0; i =2 T; jP (T )j = 1;
jP(i)nT j
jP(i)jjT j ; i 2 T; jP (T )j > 1;
� jP(i)\T j
jP(i)jjT j ; i =2 T; jP (T )j > 1:

(4.3)

The last two lines of (4.3) indicate that the �-value accounts for outside options. This can

be seen from the following justi�cation of these payo¤s.
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If a structural coalition contains players of the same type only, CS and CE distribute
the coalition�s payo¤ equally among the players as all players are symmetric to their likes,

and if a coalition contains all T -players and some non-T -players, then the players get their

Shapley payo¤s because then the Shapley payo¤s are component e¢ cient.

The interesting cases are those where outside options come into play, i.e. where a

structural coalition P 2 P contains both types of players, but not all T -players. Then, we
have v (P ) = 0: One could argue that a T -player in P has the outside option to create the

worth of 1 together with the T -players outside P and thus foregoes the payo¤ 1
jT j which

should be refunded by all players of his structural coalition because, for some reason, all

of them were interested in forming just this coalition. Hence, a T -player obtains 1
jT j but

has to pay an amount of jP\T jjP jjT j ; i.e. he obtains a net payo¤
jPnT j
jP jjT j : Every non-T -player, i.e.

Null player in P pays 1
jP jjT j to every T -player in P; i.e. a Null player has to pay

jP\T j
jP jjT j :

Moreover, one could think of that the players had some preferences� beyond the payo¤s�

for being in a particular coalition. The transfers within a structural coalition then re�ect a

(hypothetical) trade-o¤ between being in the preferred coalition and the payo¤ obtained.

Both types of players face some cost. The T -players in P obtain the payo¤ jPnT j
jP jjT j which is

less than the payo¤ 1
jT j which they obtained in a coalition with all other T -players. The

Null players in P pay jP\T j
jP jjT j instead of nothing in the case they formed singleton coalitions,

for example.

Further examples are given in Section 7.

5. Relation to the Wiese value

In this section, we compare the �-value and the Wiese (2007) value. It turns out that

both concepts are close relatives. Though the Wiese value W lacks a convincing justi�-

cation in terms of intuitive axioms (see Section 3), the following de�nition via marginal

contributions has some appeal: For all i 2 N;

Wi (N; v;P) =
1

j� (N)j
X

�2�(N)

8><>:
v (P (i))�

X
j2P(i)nfig

MCj (�) ; � 2 �i (N;P) ;

MCi (�) ; � =2 �i (N;P) ;

where �i (N;P) � � (N) denotes the set of orders which satisfy jKi (�) \ P (i)j = jP (i)j ; [56]

i.e. player i is the last player of his component in �: This has a nice interpretation: For a

given order, the last player of a component can be viewed as the �owner�of the component,

i.e. its residual claimant. While the other players of this coalition obtain their marginal

contribution, the last one obtains the worth of the coalition but has to pay the marginal

contributions of the other players. Of course, one could ask oneself what is particular about

being the last player of one�s own structural coalition within some order? Alternatively,
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one could think of the �rst or any other position. From (5.1) and (5.2) it clear that the

�-value is the average over all possible positions.

Applying the Shapley formula, we obtain the following equations which make explicit

the close relation between the Wiese value and the �-value:

Wi (N; v;P) =

Shi (N; v) +
v (P (i))
jP (i)j �

1

jP (i)j
1

j�i (N;P)j
X

�2�i(N;P)

X
j2P(i)

MCj (�) (5.1)

�i (N; v;P) =

Shi (N; v) +
v (P (i))
jP (i)j �

1

jP (i)j
1

j� (N)j
X

�2�(N)

X
j2P(i)

MCj (�) (5.2)

The last terms in (5.1) and (5.2) make the di¤erence between these concepts. Ignoring the

factor � jP (i)j�1 ; it gives the average sum of the marginal contributions of the structural

coalition P (i) :While the �-value takes this average over all orders on N , the Wiese value
focuses on those orders where i is the last player of P (i) : This implies that the Wiese
value and the �-value coincide for symmetric games.

6. Stability

Since the �-value is component independent, all of the Hart & Kurz (1983) stability

concepts coincide and can be characterized as follows (Wiese 2007): A coalition structure

P for (N; v) is stable with respect to the �-value (�-stable) i¤ for all ; 6= K � N there is

some i 2 K such that �i (N; v;P) � �i (N; v; fK;NnKg) :

Theorem 6.1. For all TU games, there are �-stable coalition structures.

In contrast, Hart & Kurz (1984) provide examples of TU games that do not allow for

stable coalition structures with respect to the Owen value. For the Wiese value it is not

yet clear whether there are games without stable coalition structures.

Proof. We mimic the Wiese (2007) proof for symmetric games. Construct a partition P
= fK1;K2; : : : ;Kkg as follows: Set P1 = ; and continue by induction: Pn+1 = Pn [Kn

for n � 1 and

Kn 2 argmax
K�NnPn

�(K) ; �(K) :=
v (K)� ShK (N; v)

jKj (6.1)

for n > 1 until Pk+1 = N: Suppose, P were not �-stable. Then, there were some coalition
C =2 P such that �i (N; v; fC;NnCg) > �i (N; v;P) for all i 2 C: The only reason for C

not being in P is that P contains a structural coalition Kj such that C\Kj 6= ; and �(C)
� �(Kj) : Hence by (4.2), we had �i (N; v; fC;NnCg) � �i (N; v;P) for i 2 C \ Kj ; a

contradiction.
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From this proof it is clear that [57]

Corollary 6.2. All �-stable coalition structures can be constructed in this way.

In (4.3), we have seen that a Null player may obtain a negative �-payo¤. This is

impossible within a �-stable coalition structure.

Corollary 6.3. Within �-stable coalition structures, Null players obtain the �-payo¤

0:

Proof. Let i be a Null player and P be a �-stable coalition structure. Since �(fig)
= 0; we have �(P (i)) = �i (N; v;P) � 0 by (4.2) and stability. If �i (N; v;P) > 0 then

�(P (i) n fig) > �(P (i))� contradicting P being �-stable.

The following theorem provides a �rst stability result. In Section 7, we apply �-

stability to a range of games.

Corollary 6.4. The grand coalition is �-stable i¤ the Shapley value lies in the core.

Unsurprisingly, of course, this implies that the grand coalition is �-stable for convex

games for which the Shapley value lies in the core.

Proof. By Corollary 6.2, the grand coalition is �-stable i¤

0 =
v (N)� ShN (N; v)

jN j = �(N) � �(K) = v (K)� ShK (N; v)
jKj

i.e. i¤ ShK (N; v) � v (K) for all K � N; i.e. i¤ the Shapley payo¤ lies in the core.

7. Examples

In this section, we apply the �-value and �-stability to a range of games.

7.1. Simple monotonic non-contradictory games. A game (N; v) is called simple if
v
�
2N
�
� f0; 1g and monotonic if K � K 0 implies v (K) � v (K 0) for all ; 6= K;K 0 � N:

Such a game is characterized by the set of winning coalitions W := fK � N jv (K) = 1g:
A winning coalition K is called minimal if v (K 0) < v (K) for all K 0 ( K: We denote by

Wmin the set of these coalitions: A simple monotonic game is called non-contradictory if

K 2W implies NnK =2W. For these games, we have �(K) = �ShK
jKj if K =2W and �(K)

= 1�ShK
jKj if K 2W:
It is clear that the Shapley payo¤ Shi (N; v) is non-negative and that it is 0 i¤ i is a

Null player, i.e. if i is not member of any winning coalition. Hence, �(K) is negative if K

is not winning but contains non-Null players. Suppose there is a unique minimal winning

coalition T: If T � K then �(K) = 0: Therefore, the �-stable coalition structures are

those where jP (T )j = 1; i.e. all T -players are united. If there is more than one minimal
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winning coalition then we have ShK < 1; hence �(K) > 0 for all minimal winning

coalitions K. Since �(K) decreases in jKj for ShK < 1 and K 2W; a �-stable coalition
structure contains a minimal winning coalition that maximizes 1�ShKjKj : Since the game is

non-contradictory, the other players form structural coalitions containing players with the [58]

same Shapley payo¤. The latter follows from �(K) = �ShK
jKj if K =2W.

Theorem 7.1. In simple monotonic non-contradictory games, we have the following

�-stable coalition structures:

1. If Wmin = fTg ; T � N then P is �-stable i¤ jP (T )j = 1:
2. If jWminj > 1 then P is �-stable i¤ there is some T 2 Wmin \ P such that 1�ShTjT j �

1�ShK
jKj for all ; 6= K 2Wmin, and for all i; j 2 NnT; j 2 P (i) implies Shi = Shj.

On the one hand, �-stability favors small winning coalitions since we have jKj as
denominator in �(K) : Besides the payo¤ as the main e¤ect, one could argue that it is

easier to keep smaller coalitions together, for example because of lower negotiation costs.

On the other hand, �-stability favors coalitions with a low sum of Shapley payo¤s. Since

the Shapley payo¤s� in a sense� measure the outside options of the players, coalitions

where the players have less outside options tend to be more stable. This seems to be full

in line with our intuitions. Altogether, �-stability balances individual payo¤s and stability.

We apply this result to some special classes of simple monotonic non-contradictory

games.

Unanimity games (N;uT ) have the unique minimal winning coalition T: Hence by

Theorem 7.1, the coalition structures P satisfying jP (T )j = 1 are the �-stable ones. The
�-payo¤s have already been given by (4.3).

Consider now the apex games An; n � 2 with the set of players f0; 1; : : : ; ng where we
call 0 the apex player and the other players minor ones. All coalitions which contain the

apex player and at least one minor player as well the coalition which contains all minor

players produce the worth of 1 while all other coalitions produce the worth of 0: We then

have Sh0 = n�1
n+1 and Shi =

2
n(n+1) ; i 6= 0: This gives the �-payo¤s for the apex player 0

and the minor players i as follows

�0 (An;P) =

8<: 0; P (0) = f0g
n�2
n + 2

njP(I)j ; P (0) 6= f0g
(7.1a)

�i (An;P) =

8>><>>:
2

njP(i)j ; 0 2 P (i)
1
n P (i) = Nn f0g
0; ; P (i) ( Nn f0g

(7.1b)

The interesting cases are those where the apex player and some minor players are in the

same structural coalition. Both �-payo¤s decrease with the number of minor players and



V.7. EXAMPLES 84

�nally become the Shapley payo¤s when the grand coalition is formed. Since the Shapley

value assigns a positive payo¤ to all players, all players in this structural coalition gain in

comparison to their Shapley payo¤s. If just one minor player joined the apex player, his

payo¤ then is 1n and equals his �-payo¤ in the coalition structure where all minor players

form a structural coalition.

The apex games An are simple monotonic non-contradictory games with more than

one minimal winning coalition. In particular, the minimal winning coalitions are the coali-

tions f0; ig containing the apex player and some minor player i and the coalition Nn f0g
containing all minor players. By (7.1), we have �(f0; ig) = n�1

n(n+1) = �(Nn f0g) : Hence
by Theorem 7.1, An has the following �-stable coalition structures: (a) The apex player

forms a coalition with one minor player and the other players are organized arbitrarily. [59]

(b) All minor players form a coalition excluding the apex player. Thus, all minimal win-

ning coalitions are �-stable. This result is in line with Bennet (1983), whereas Hart &

Kurz (1984) and Aumann & Myerson (1988) obtain (b) as the outcome, while Chatterjee,

Dutta, Ray & Sengupta (1993) favor (a).

7.2. The gloves game. Shapley & Shubik (1969) consider a simple market game� the

gloves game [�; �]. There are � > 0 left-glove holders (`) in L and � > 0 right-glove holders

(r) in R: The coalition function is given by v (K) = min(jR \Kj ; jL \Kj) for K � R _[L
=: N; i.e. the worth of a coalition is the number of its matching pairs of gloves. For

symmetry reasons, we focus on the case � � �: The Shapley payo¤s then are given by

Shr (�; �) =
1

2
� �� �

2�

�X
k=0

�
�
k

��
�+k
k

� ; Sh` (�; �) =
1

2
+
�� �
2�

�X
k=1

�
�
k

��
�+k
k

� ; (7.2)

i.e. Sh` (�; �) > Shr (�; �) (> 0) i¤ � < �: Hence, the Shapley value re�ects the relative

scarcity of the resources.

By (4.2), the �-payo¤s easily can be calculated from (7.2). Further, it is easy to see

that the �-value inherits the sensitivity of the Shapley value with respect to the relative

scarcity of the resources: For r 2 P (`) ; we have �` (�; �;P) � �r (�; �;P) = Sh` (�; �)

� Shr (�; �) : Hence, the �-value captures outside options in the gloves game. Further,
forming balanced coalitions is rewarded by the �-value. A structural coalition P (i) is
called balanced if it contains the same number of left- and right-glove holders. Obviously,

we have Sh` (�; �) + Shr (�; �) � 1; hence by (4.2), �i (�; �;P) � Shi (�; �) for balanced

P (i) where equality holds i¤ � = �:

For the gloves game, Shapley & Shubik (1969) show that under replication ([��; ��] ;

�!1) the Shapley value converges to the core. If � > �, the Shapley payo¤of a left-glove

holder converges to 1 and that one of right-glove holder to 0: For � = �; both payo¤s are 12 :

A coalition structure P is called balanced i¤ all structural coalitions containing left-glove
holders are balanced. For balanced coalition structures, the core is component e¢ cient.
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Hence in the limit, the Shapley payo¤s become component e¢ cient. Therefore by (4.2),

the �-payo¤s converge to the Shapley payo¤s, hence to the core. Note that this is not the

case for unbalanced structural coalitions containing left-glove holders. Whereas the worth

�counts�the matching pairs within a structural coalition, at the limit, the Shapley value

�counts�the number of left-glove holders.

Theorem 7.2. For balanced coalition structures and [��; ��] ; � ! 1; the �-payo¤s
converge to the core.

If K contains left- or right-glove owners only then �(K) = �Shi < 0; i 2 K: If

K contains both types of players but is unbalanced then it is possible to increase �(K)

by removing the glove holders in excess. This is immediate from (6.1), as v (K) does not

change but ShK and jKj decrease. If K is balanced then �(K) = 1�(Sh`+Shr)
2 � 0: Hence,

�(K) is maximal when K is balanced. By Corollary 6.2, we then have

Theorem 7.3. In [�; �], the balanced coalition structures are the �-stable ones.

[60]8. Conclusion

In this paper, we introduced and advocated a component e¢ cient CS-value� the �-

value� that accounts for outside options as an alternative to the Wiese (2007) value. The

main advantages of the �-value are its intuitive axiomatization where the splitting axiom

SP is the crucial ingredient and the universal existence of �-stable coalition structures.

Besides, the �-value can easily be derived from the Shapley value. Nevertheless, both

concepts turn out to be close relatives that coincide on the class of symmetric games.

Therefore, one could view the �-value and its axiomatization as means to support the

Wiese value which in view of its appealing de�nition via marginal contributions seems to

be desirable.

Further, splitting type axioms similar to our splitting axiom SP may serve as means

to justify/axiomatize component e¢ cient CS-value concepts that are derived from other

(e¢ cient) value concepts via formulae like (4.2). Let us outline an example: Thrall &

Lucas (1963) introduce partition function form games (PFFG), (N; p) : In PFFG, the

worth p (P;P) of a coalition P is given by the partition function p which takes into account
not only the coalition itself but also a coalition structure P it is embedded in, i.e. P 2 P:
Several values ' for PFFG have been proposed (e.g. Myerson 1977b, Bolger 1989, Potter

2000, Pham Do & Norde 2002) all of which satisfy the e¢ ciency axiom pE, 'N (N; p)
= p (N; fNg) : Similar to CS-games, de�ne CS-PFFG as PFFG that come with a �xed

coalition structure, (N; p;P) : Then, one may be interested in component e¢ cient values
for such CS-PFFG, i.e. values that satisfy the axiom pCE: 'P(i) (N; p;P) = p (P (i) ;P)
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for all i 2 N; which are supported by intuitive axioms. Such values may be of interest in
the analysis of oligopoly games where not necessarily a single cartel arises.

For example, Pham Do & Norde (2002) adapt the notions of a Null player and of

symmetric players as well as the Shapley axioms A, N, S, and E to PFFG such that

the resulting axioms (indicated by the a¢ x p) characterize their value 	: Keep pA and

replace pS and pN by the new axioms pCS and pGN in analogy to CS andGN. Finally,
add the axiom pSP analogous to SP. Arguments similar to those applied in the proof of
Theorem 4.1 then show that the axioms pA, pCS, pGN, pCE, and pSP characterize

the CS-PFFG value 	� given by

	�i (N; p;P) = 	i (N; p) +
p (P (i) ;P)�	P(i) (N; p)

jP (i)j
for all i 2 N:
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CHAPTER VI

Outside options in TU games with a cooperation structure

A revised version of this chapter has been published as �André Casajus (2009): Net-

works and outside options, in: Social Choice and Welfare 32 (1), 1�13�.

Abstract

In this paper, we introduce and characterize a component e¢ cient value for TU

games with a cooperation structure which in contrast to the Myerson (1977) value

accounts for outside options. It is based on the idea that the distribution of the worth

within the connected components should be consistent with some �outside-option�

graphs which keep the internal link structure of a component, but which consider all

links between a component�s players and the players outside.

Key Words: TU game, Outside option, Splitting, Consistency, Cooperation structure

JEL classi�cation: C71

0I wish to thank Lothar Tröger and seminar participants at the Leipzig Graduate School of Management

(HHL) for helpful discussions on the matter.
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1. Introduction

One right-glove holder, R; and one left-glove holder, `; actually sell their pair of gloves

which is worth 1 via some agent A1: How should R, `, and A1 split the proceeds? Would

this split change if there were a second agent A2? In order to answer this kind of questions,

Myerson (1977), Borm et al. (1992), and Hamiache (1999) consider values for TU games

with a cooperation structure, i.e. an undirected graph on the player set (henceforth, CO-

games and CO-values). In the following, we focus on the Myerson value as the most

eminent one.

Our leading example then corresponds to a TU game with 3 (or 4) players, R, `, A1;

(and A2), where the worth of a coalition is 1 if it contains a matching pair, i.e. the players

R and `; and is 0 if it does not so. The fact that R and ` sell their pair via A1 then can

be modelled by the following graphs:

R

� � �

A1

� � �

`

�
(1.1)

R

� � �

A1

� � �

`

�
A2

�
(1.2)

In both cases, the Myerson value � assigns the same payo¤s to R; `; and A1; �R = �`
= �A1 =

1
3 : Though A is a Null player, he obtains a positive payo¤ what �ts nicely with

our intuitions on his role in this transaction� he actually facilitates the sale. Yet, a bit

unintuitively, the share of A1 is not a¤ected by the presence of the potential competitor

A2: Thus, the Myerson value does not account for the outside option of R and ` to sell

their pair of gloves via A2. Outside options, however, may be important:

Even if a particular alliance is ultimately formed, the division of the proceeds between

the allies will be decisively in�uenced by the other alliances which each one might

alternatively have entered. (von Neumann & Morgenstern 1944, p. 36)

During the course of negotiations there comes a moment when a certain coalition

structure is �crystallized�. The players will no longer listen to �outsiders�, yet

each coalition has still to adjust the �nal share of its proceeds. (This decision may

depend on options outside the coalition, even though the chances of defection are

slim). (Maschler 1992, pp. 595)
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The Myerson value as well as the values considered by Borm et al. (1992) and Hami-

ache (1999) share this neglect of outside options with the Aumann & Drèze (1974) value

(henceforth AD-value) for TU-games with a coalition structure, i.e. a partition of the

player set (henceforth CS-games). In order to remedy this peculiarity of the AD-value,

Casajus (2009)1 and Wiese (2007) introduce the �-value and the outside-option value.

Hence, it seems to be worthwhile to look for a CO-value which generalizes these concepts.

In this paper, we introduce and axiomatize the �graph-�-value�, �]; which extends the

�-value to CO-games and thus accounts for outside options. To achieve this, we restrict

the Myerson fairness axiom to situations without outside options or where outside option

are not a¤ected. An outside-option consistency axiom determines how players within the

same component assess their outside options and restores the uniqueness lost by relaxing

the fairness axiom. It turns out that the �]-value coincides with �-value for completely

connected components. For our leading example, we obtain the following payo¤s: If A2

is not present then the payo¤s are as for the Myerson value. But in presence of A2; the

payo¤ of A1 decreases. In particular, we then have �]R = �]` =
4
9 and �

]
A1 =

1
9 which

shows that the �]-value rewards outside options without neglecting the role of player A1.

The plan of this paper is as follows: The next section provides basic de�nitions and

notation. In the third section, we discuss several axioms for CO-games with respect to

outside options. The �]-value is introduced and axiomatized in the fourth section. In the

�fth section, we explore some properties of this CO-value. In particular, we clarify its

relation to the �-value and demonstrate the di¤erence to the Myerson value concerning

stability issues. Some remarks conclude the paper.

2. Basic de�nitions and notation

In order to avoid set theoretic complications, we assume that there is a large enough

set U that contains the names of the players. A (TU) game is a pair (N; v) consisting of
a non-empty and �nite set of players N � U and a coalition function v : 2N ! R; v (;)
= 0: v (K) is called the worth of K � N ; subsets of N are called coalitions. In general, we

consider the set of all TU games, possibly equipped with some additional structure. For

; 6= T � N; the game (N;uT ), uT (K) = 1 if T � K and uT (K) = 0 otherwise, is called a

unanimity game. The restriction of v to N 0 � N is denoted vjN 0 : Player i is a Null player

in (N; v) if v (S) = v (Sn fig) for all S � N: (N; v) is called superadditive if K;S � N and

K \ S = ; imply v (K [ S) � v (K) + v (S) : A value is an operator ' that assigns payo¤

vectors ' (N; v) 2 RN to all games (N; v) ; N � U :
An order of a set N is a bijection � : N ! f1; : : : ; jN jg with the interpretation that i

is the � (i)th player in �. The set of these orders is denoted by � (N) : The set of players

1Also Chapter V of this thesis.
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not after i in � is denoted by Ki (�) = fj 2 N j� (j) � � (i)g : The marginal contribution
of i in � is de�ned as MCi (�; v) := v (Ki (�))� v (Ki (�) n fig) : The Shapley (1953) value
Sh is given by

Shi (N; v) := j� (N)j�1
X

�2�(N)
MCi (�; v) ; i 2 N: (2.1)

A coalition structure for (N; v) is a partition P � 2N where P (i) denotes the compo-
nent containing player i: A partition P 0 � 2N is �ner than P � 2N if P 0 (i) � P (i) for all
i 2 N: A CS-game is a game together with a coalition structure, (N; v;P) : A CS-value

is an operator ' that assigns payo¤ vectors ' (N; v;P) 2 RN to all CS-games (N; v;P) ;
N � U : For K � N; we denote by 'K (N; v; �) the sum

P
i2K 'i (N; v; �) :

The AD-value simply is the restriction of the Shapley value to the components, i.e.

ADi (N; v;P) = Shi
�
P (i) ; vjP(i)

�
; the �-value (Casajus 2009) is de�ned by

�i (N; v;P) := Shi (N; v) +
v (P (i))� ShP(i) (N; v)

jP (i)j ; i 2 N: (2.2)

A cooperation structure for (N; v) is an undirected graph (N;L) on N where L is

a subset of the set LN := ffi; jg ji; j 2 N; i 6= jg of unordered pairs from N: Abusing

notation, we frequently refer to the link set L as the graph. For fi; jg we also write ij;
L+ ij denotes the graph L[fijg ; analogously for ���. Given any graph L on some set N;
N splits into (maximal connected) components the set of which is denoted by C (N;L);

Ci (N;L) 2 C (N;L) denotes the component containing i: LjN 0 denotes the restriction

of L to N 0 � N; LjN 0 := fij 2 Lji; j 2 N 0g : Any coalition structure P on N induces a

cooperation structure LP :=
S
i2N L

P(i) on N: For K;K 0 � N; K [K 0 = ;, we denote by
[K;K 0] � LN the set of all links that connect players in K with players in K 0: A CO-game

is a game together with a cooperation structure, (N; v; L). A CO-value is an operator

' that assigns payo¤ vectors ' (N; v; L) 2 RN to all CO-games (N; v; L) ; N � U . The
Myerson (1977) value � is de�ned by

� (N; v; L) := Sh
�
N; vL

�
; vL (K) :=

X
S2C(K;LjK)

v (S) ;K � N: (2.3)

3. Axioms for CO-values

In this section, we consider several axioms for CO-values with respect to outside op-

tions.

Axiom 3.1 (Component e¢ ciency, CE). For all C 2 C (N;L) ;

'C (N; v; L) = v (C) :

Axiom 3.2 (Fairness, F). For all ij 2 L; we have

'i (N; v; L)� 'j (N; v; L) = 'i (N; v; L� ij)� 'j (N; v; L� ij) :
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CE and F are the original axioms that characterize the Myerson value. CE indicates
that the connected components C 2 C (N;L) are the productive units. The very nice

fairness axiom F has strong consequences far beyond pure fairness considerations. In

particular, van den Nouweland (1993, pp. 28) shows that � satis�es the following axiom.

Axiom 3.3 (Component decomposability, CD). For all i 2 C 2 C (N;L) ;

'i (N; v; L) = 'i (C; vjC ; LjC) :

Hence, the payo¤s within a component C 2 C (N;L) are not a¤ected by the players

outside, neither from their actual cooperation structure LjNnC nor from the potential

contributions of players in C to coalitions containing players from NnC. Therefore, the
Myerson value cannot account for outside options. It shares this property with the AD-

value for CS-games. In fact, � and AD coincide for completely connected components, i.e.

AD(N; v;P) = �
�
N; v; LP

�
(Myerson 1977).

Therefore, one could argue that F is to strong an axiom and one could think of

restricting F to those situations were outside options are not involved: (i) Removing a

link ij does not split a component, i.e. outside options do not change. (ii) ij is removed

from a connected graph, i.e. from a cooperation structure which lacks outside options.

This idea is captured by the following two axioms whereWF1 refers to case (i) andWF2
to case (ii). Note that WF2 involves games with connected graphs only. Furthermore,
WF2 may relate games with di¤erent player sets while F involves a �xed player set.

Axiom 3.4 (Weak fairness 1, WF1). If j 2 Ci (N;L� ij) then

'i (N; v; L)� 'i (N; v; L� ij) = 'j (N; v; L)� 'j (N; v; L� ij) :

Axiom 3.5 (Weak fairness 2, WF2). If L is connected on N and ij 2 L then

'i (N; v; L)� 'i
�
Ci (N;L� ij) ; vjCi(N;L�ij); LjCi(N;L�ij)

�
= 'j (N; v; L)� 'j

�
Cj (N;L� ij) ; vjCj(N;L�ij)LjCj(N;L�ij)

�
:

The following Lemma gives a characterization of � which separates two aspects of F,
fairness,WF2, and neglect of outside options, CD.

Lemma 3.6. � is characterized by CE, CD, and WF2.

Proof. CD and F imply WF2. Hence, � satis�es CE, CD, andWF2. Since (C;LjC)
is connected for C 2 C (N;L) ; CD and WF2 together with arguments similar to those
in the Myerson (1977) proof show that � is the unique such value.

Outside options come into play when the links in L ultimately have been formed, i.e.

the players do not consider breaking links or creating new ones. Therefore, the players
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are not necessarily restricted to the actual cooperation structure outside their component

when they bargain within their component on the distribution of that component�s worth.

Compare Maschler (1992, pp. 595) cited in the Introduction. Therefore, one could argue

that the distribution of the worth within C 2 C (N;L) should not be a¤ected by how

the players outside C are organized. This is expressed with the following axiom. As CD,
CI neglects the link structure outside C; but in contrast to CD, it may recognize the
productive potential and the linking potential outside C.

Axiom 3.7 (Component independence, CI). If LjCi(N;L) = L0jCi(N;L0) then

'i (N; v; L) = 'i
�
N; v; L0

�
:

The �-value for CS-games (Casajus 2009) is characterized by �ve axioms: additivity,

component restricted symmetry, component e¢ ciency, the restriction of the Null player

axiom to the grand coalition, and the following splitting axiom which determines how

outside options are evaluated.

Axiom 3.8 (Splitting, SP). If P 0 is �ner than P then for all i; j 2 P 2 P 0; we have

'i (N; v;P)� 'i
�
N; v;P 0

�
= 'j (N; v;P)� 'j

�
N; v;P 0

�
:

Since all partitions are �ner than fNg ; SP implies (in fact, SP can be replaced by the

following property)

'i (N; v;P)� 'j (N; v;P) = 'i (N; v; fNg)� 'j (N; v; fNg) (3.1)

for i; j 2 P 2 P:
While the Myerson value satis�es CD, i.e. restricts attention to the graphs (C;LjC) ;

C 2 C (N;L) ; we make use of the player�s outside-option graphs L (i;N) which generalize
the transition from P to fNg in (3.1). What is important about fNg is that the players
in some component P 2 P are connected to those outside, i.e. in NnP . Since in CS-
games the components do not bear any inner structure, one necessarily ends up at fNg :
Due to their richer structure, in CO-games, there is a range of reasonable alternatives to

derive a connected graph L (i;N) from L for i 2 C: Of course, one would like to keep the
inner structure of C; i.e. L (i;N) jC = LjC : Also, every player in C should be connected

with every player in NnC in order to account for outside options in a symmetric way.

Again for symmetry reasons, at �rst glance, one would guess that one is left with just two

alternatives if CI had to be satis�ed:

L (i;N) := LjC [ [C;NnC] (3.2)

L+ (i;N) := LjC [ [C;NnC] [ LNnC (3.3)

Both graphs agree with L on C and contain all links between the players in i�s component

C and those in NnC: L (i;N) which we call the lower outside-option graph (LOOG)
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contains no further links. Since the players in NnC are completely disconnected internally,
L (i;N) jNnC = ;, the LOOG re�ects the productive as well as the linking potential of the
players in C with respect to the players in NnC: In contrast, L+ (i;N) which we call the
upper outside-option graph (UOOG) completely connects the players in NnC: Therefore,
the UOOG neglects the linking potential: When there is no danger of confusion, we write

L (i) or L+ (i) : Note that both outside-option graphs are connected and coincide with L

whenever L is connected, i.e. if there are no outside options. Further, both graphs coincide

for players of the same component, respectively.
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Figure 3.1. A lower outside option graph

Figure 3.1 provides an example of a LOOG. On the left side, we have the link set L of

some graph. On the right one, the outside-option graph L (1) for player 1 is given where

the original links kept are drawn as solid lines while the additional links are drawn as

dashed lines. The component of player 1 in L comprises the players in f1; 2; 3g : Player 1�s
outside-option graph hence does not contain the link 12 which is missing in L: Further,

all original links among players outside 1�s component, i.e. in the set f4; 5; 6g ; have been
removed. Finally, the players in f1; 2; 3g are completely connected with those outside
(dashed lines).

Since the LOOG seems to capture outside options in a broadest sense, we employ

this graph in our axiomatization of the �]-value. As we will see later on (Theorem 4.6),

however, it does not matter whether we employ the LOOG or the UOOG since the linking

potentials of players of the same component recognized by the LOOG cancel out. Now,

the idea of (3.1) can be expressed for CO-games as follows.

Axiom 3.9 (Outside-option consistency, OO). If i; j 2 C 2 C (N;L) then

'i (N; v; L)� 'j (N; v; L) = 'i (N; v; L (i))� 'j (N; v; L (j)) :
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In presence of CE, CD is equivalent to

'i (N; v; L)� 'j (N; v; L) = 'i (C; vjC ; LjC)� 'j (C; vjC ; LjC)

holding for all i; j 2 C 2 C (N;L) which clari�es the relation between OO and CD. It is
clear that OO holds trivially if L is connected.

4. A �-value for cooperation structure games

In this section, we show that some of the axioms (CE, WF2, OO) advocated in
the previous section already characterize a CO-value which satis�es the remaining such

axioms.

Lemma 4.1. OO and WF2 imply WF1.

In our axiomatization, OO replaces CD. Similar to Lemma 3.6, WF1 then has not
to be required explicitly.

Proof. For j 2 Ci (N;L� ij) ; (3.2) implies that L (i) � ij = (L� ij) (i) is connected.
We then have

'i (N; v; L)� 'j (N; v; L)
OO
= 'i (N; v; L (i))� 'j (N; v; L (i))

WF2
= 'i (N; v; L (i)� ij)� 'j (N; v; L (i)� ij)

= 'i (N; v; (L� ij) (i))� 'j (N; v; (L� ij) (i))
OO
= 'i (N; v; L� ij)� 'j (N; v; L� ij)

which proves the claim.

Lemma 4.2. If ' satis�es CE, WF1, and WF2 then it coincides with � on all con-
nected graphs.

This result is in line with our intention to model outside options. Connected graphs

lack outside options. Therefore, one could argue that all arguments in favor of � apply in

these situations.

Proof. � is characterized by CE and F where the latter strengthensWF1 and together
withCD impliesWF2. We mimic the Myerson (1977) proof of uniqueness. Suppose ' and
�' both satisfy CE,WF1, andWF2. Suppose N is a minimal player set such that ' and �'

di¤er on a connected graph. By CE, N contains at least two players. Further, suppose L

is a minimal connected graph on N such that they do so. If j 2 Ci (N;L� ij) thenWF1
and the minimality of L imply 'i (N; v; L) � 'j (N; v; L) = �'i (N; v; L) � �'j (N; v; L) :

And if j =2 Ci (N;L� ij) then WF2 and again the minimality of N imply 'i (N; v; L)

� 'j (N; v; L) = �'i (N; v; L) � �'j (N; v; L) : Since L is connected, we have 'i (N; v; L) �
�'i (N; v; L) = � for some � and all i 2 N: CE then implies � = 0: A contradiction.
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Theorem 4.3. There is a unique CO-value that satis�es CE, WF2, and OO.

Proof. Suppose ' satis�es CE,WF2, and OO. By OO, we have L (i) = L (j) and

'i (N; v; L)� 'i (N; v; L (i)) = 'j (N; v; L)� 'j (N; v; L (i))

for i; j 2 C 2 C (N;L) : Summing up over C combined with CE gives

jCj ('i (N; v; L)� 'i (N; v; L (i))) = v (C)� 'C (N; v; L (j)) :

Since L (i) is connected, Lemmas 4.1 and 4.2 imply

'i (N; v; L) = �i (N; v; L (i)) +
v (C)� �C (N; v; L (i))

jCj : (4.1)

Hence, ' were unique.

By construction, the value given by (4.1) satis�es CE. If Ci (N;L) = N then L (i) =

L (j) = L by (3.2); and therefore

'i (N; v; L)� 'j (N; v; L)

= �i (N; v; L)� �j (N; v; L)

= �i (N; v; L� ij)� �j (N; v; L� ij)

= �i
�
Ci (N;L� ij) ; vjCi(N;L�ij); LjCi(N;L�ij)

�
��j

�
Cj (N;L� ij) ; vjCj(N;L�ij)LjCj(N;L�ij)

�
= 'i

�
Ci (N;L� ij) ; vjCi(N;L�ij); LjCi(N;L�ij)

�
�'j

�
Cj (N;L� ij) ; vjCj(N;L�ij)LjCj(N;L�ij)

�
by (4.1), � satisfying F, � satisfying CD, and again (4.1) together with LjCk(N;L�ij) being
connected on Ck (N;L� ij) ; for k = i; j. Hence, ' satis�es WF2. If j 2 Ci (N;L) then
L (i) = L (j) by (3.2) and therefore

'i (N; v; L)� 'j (N; v; L) = �i (N; v; L (i))� �j (N; v; L (j))

= 'i (N; v; L (i))� 'j (N; v; L (j))

by (4.1) and L (i) being connected on N and Lemma 4.2 which shows that ' satis�es

OO.

The CO-value de�ned by (4.1) is called �the graph-�-value�and we denote it by ��]"

where the musical �sharp�symbol ] is intended to indicate a graph. It employs the Myerson

value of the outside-option graph L (i) as a yardstick to distribute the payo¤ within the

component Ci (N;L). The players within a component depart from their outside-option

payo¤s �i (N; v; L (i)) and then compare the worth of the coalition with the sum of the

outside-option payo¤s; the di¤erence, positive or negative, is distributed equally. By (4.1)
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and (3.2) or Lemma 4.2, �] coincides with the Myerson value if a game lacks outside

options, i.e. if the graph is connected. From (3.2) and (4.1) it is clear that �] satis�es CI.

It is easy to see that the characterization of �] is non-redundant. � satis�es CE and
WF2, but not OO. Further, � applied to C (N;L) satis�es CE and OO, but notWF2.
Finally, the CO-value ' given by 'i (N; v; L) = �]i (N; v; L) + 1 obviously satis�es WF2
and OO, but not E.

In Section 3, we also suggested the UOOG. It is easy to check that Lemma 4.1 and

4.3 remain true if one replaces OO by OO+ where L (i) is replaced by L+ (i). Denote
the resulting CO-value by �# which is given by replacing the L (j) in (4.1) by L+ (j) :

Interestingly, �] and �# coincide. We show this by proving that �] and �# satisfy the

following strong version of OO.

Axiom 4.4 (Strong outside option consistency, SOO). If i; j 2 C 2 C (N;L), LjC =
L0jC ; and [C;NnC] � L0 then

'i (N; v; L)� 'j (N; v; L) = 'i
�
N; v; L0

�
� 'j

�
N; v; L0

�
:

The outside-option graphs L0 in SOO all coincide with the original graph on the

component C; i.e. they express the same inside options as the original graph. Further,

they all re�ect comprehensive and symmetric productive outside options via the links in

[C;NnC] : The di¤erence between two such outside-option graphs lies on the link set LNnC ,
the links in NnC: The more links from LNnC the graph L0 contains the less linking outside

option are modelled. If LNnC � L0, i.e. L0 = L+ (i) ; then any subset of NnC is connected
internally. Hence, L0 does not re�ect linking outside options. Vice versa, if LNnC \L0 = ;;
i.e. L0 = L (i) ; then the players in NnC are connected only via players in C; i.e. L0 also

re�ects comprehensive linking outside options. Yet, as the following Lemma and Theorem

reveal, this di¤erence cancels out since SOO applies the same outside-option graph to

both players involved.

Lemma 4.5. �] and �# satisfy SOO.

Proof. Consider j 2 Ci (N;L) and let L0 be as in SOO. Since L0 is connected, �] = �

on connected graphs, and by (4.1), the claim on �] is equivalent to

�i (N; v; L (i))� �j (N; v; L (i)) = �i
�
N; v; L0

�
� �j

�
N; v; L0

�
(4.2)

By (3.2) and (3.3), replacing L (i) by L+ (i) ; etc., the proof also runs through for �#.

Consider �; � 2 � (N) such that � (i) > � (j) ; � (i) = � (j) ; � (j) = � (i) ; and � (k) =

� (k) for all k 2 Nn fi; jg : In order to show (4.2), by (2.1) and (2.3) it su¢ ces to prove

MCi

�
�; vL(i)

�
+MCi

�
�; vL(i)

�
�
�
MCj

�
�; vL(i)

�
+MCj

�
�; vL(i)

��
(4.3)

=MCi(�; v
L0) +MCi(�; v

L0)� (MCj(�; v
L0) +MCj(�; v

L0)):
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If K � Ci (N;L) then L (i) jK = LjK = L0jK and if j 2 K * Ci (N;L) then C (K;L (i) jK)
= fKg = C (K;L0jK) by (3.2) and our assumption on L0. Hence by (2.3), vL(i) (K) =
vL

0
(K) for all K � N such that i 2 K or j 2 K: By our choice of � and �, this already

implies

MCi

�
�; vL(i)

�
=MCi(�; v

L0) and MCj

�
�; vL(i)

�
=MCj(�; v

L0): (4.4)

Further, we have Ki (�) n fig = Kj (�) n fjg and therefore

MCi

�
�; vL(i)

�
�MCj

�
�; vL(i)

�
= vL(i) (Ki (�))� vL(i) (Kj (�)) (4.5)

= vL
0
(Ki (�))� vL

0
(Kj (�)) =MCi(�; v

L0)�MCj(�; v
L0)

where the second equation follows from the arguments above. Then, (4.4) and (4.5)

together imply (4.3).

By Theorem 4.3 and since SOO implies both OO and OO+, there is a unique CO-
value that satis�esCE,WF2, and SOO. Since �] and �# are characterized by CE,WF2,
and OO or OO+; respectively, by Lemma 4.5, this CO-value coincides with �] = �#:

Theorem 4.6. �] = �# is the unique CO-value that satis�es CE, WF2, and SOO.

5. Properties

First, we explore the relation between the �]-value and �-value which already indicates

that �] accounts for outside options. An example demonstrates that this property extends

to cases which are not already covered by the �-value. Further, we investigate properties

of �] for superadditive games. Finally, we compare network formation under � and under

�] with an example.

5.1. Relation to the �-value. If a connected component C 2 C (N;L) is completely

connected internally, i.e. LjC = LC ; then L+ (i) = LN for i 2 C by (3.3). Since

�
�
N; v; LN

�
= Sh (N; v) (Myerson 1977), Theorem 4.6, (4.1), and (2.2) imply the fol-

lowing Theorem where part (ii) is immediate from part (i). Since LN is connected, we also

have �]
�
N; v; LN

�
= Sh (N; v) : Hence, �] generalizes the Shapley value and the �-value,

the latter justifying its name �graph-�-value�.

Theorem 5.1. (i) If i 2 C 2 C (N;L) ; LjC = LC ; and P (i) = C then �]i (N; v; L) =

�i (N; v;P) :
(ii) �]

�
N; v; LP

�
= � (N; v;P) :

For any CO-game (N; v; L) and k 2 N de�ne the CO-game (Nk; vk; Lk) where Nk =

N [N0k; N0k := f0jjj = 1; : : : ; kg ; Lk = L; and vk (K) = v (K \N) for all K � Nk: I.e.,

(Nk; vk; Lk) is derived from (N; v; L) by adding k Null players which are not linked to any

other player.
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Theorem 5.2. limk!1 �]i (Nk; vk; Lk) = �i (N; v;C (N;L)) for all i 2 N:

The intuition behind this property should be clear. The more Null players outside

the original player set are present, the less the internal link structure of the connected

components in�uences the distribution of worth within them. At the limit, all what

matters is whether players are connected or not, i.e. the partition C (N;L) :

Proof. In view of Theorem 4.6, (4.1) and (2.2), it su¢ ces to show that

lim
k!1

�i
�
Nk; vk; L

+
k (i)

�
= Shi (N; v)

for all i 2 N: By (3.2), L+k (i) jN 0 is connected if N 0 \N0k 6= ;: Further, any �k 2 � (Nk)

induces some �kjN = �(N) such that �kjN (i) � �kjN (j) i¤ �k (i) � �k (j) for all i; j

2 N: Hence for i 2 N; we have

vL
+
k (i) (Ki (�k)) = v (Ki (�kjN )) and vL

+
k (i) (Ki (�k) n fig) = v (Ki (�kjN ) n fig) (5.1)

if Ki (�k) \ N0k 6= ;: Further, the probability that �k 2 � (Nk) induces � 2 � (N) is
j� (N)j�1 for all k 2 N: Let prob (Ki (�k) \N0k 6= ;j�kjN = �) denote the probability

that some added Null player comes before player i in some order �k 2 � (Nk) conditional

on inducing the order � 2 � (N) ; �kjN = �: It is clear that

lim
k!1

prob (Ki (�k) \N0k 6= ;j�kjN = �) = 1 (5.2)

for all � 2 � (N) and i 2 N: Together with (2.3) and (2.1), (5.1) and (5.2) then prove the
claim.

5.2. Outside options� an example. The formula (4.1) together with (3.2) shows that
a player�s payo¤ depends on the link structure of his component as well as his productive

potential with players outside his component. This indicates that the �]-value has the

potential to account for outside options. Reconsidering our leading example shows that it

actually does so. It should be clear that this property extends to other situations involving

outside options.

Example 5.3. In the �rst situation of our leading example, the graph (1.1) is con-

nected. By Lemma 4.2, the �]-payo¤s are the same as for �: In the second situation, we

have N = fR; `;A1; A2g with the productive players in T = fR; `g and the graph L from
(1.2). By (3.2), we then have L (R) = L (`) = L (A1) = LNnR`; i.e. the complete graph
minus the link R`: It is easy to check that this gives the �-payo¤s �A1 (N;uT ; L (A1))

= 1
12 ; �R (N;uT ; L (R)) = �` (N;uT ; L (`)) =

5
12 ; and then by (4.1) the �

]-payo¤s

�]A1 (N;uT ; L) =
1

12
+
1�

�
5
12 +

5
12 +

1
12

�
3

=
1

9

�]R (N;uT ; L) = �]` (N;uT ; L) =
5

12
+
1�

�
5
12 +

5
12 +

1
12

�
3

=
4

9
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as indicated in the Introduction. CE, of course, implies �]A2 (N;uT ; L) = 0: Hence, in-

deed, the �]-value recognizes the potential competition between the linking agents in this

situation.

5.3. Link monotonicity and improvement. In this section, we explore to which ex-
tend two properties of the Myerson value concerning superadditive games, link monotonic-

ity and the improvement property, are satis�ed. These properties are of particular interest

in the study of stability issues for such games which we will touch in Section 5.4. It turns

out that �] satis�es component restricted versions of these axioms only. This seems to

make it much more di¢ cult to derive general stability properties similar to those of Dutta,

van den Nouweland & Tijs (1998).

For superadditive games, � satis�es the following axiom (Myerson 1977).

Axiom 5.4 (Link monotonicity, LM). For all i; j 2 N;

'i (N; v; L+ ij) � 'i (N; v; L) :

The following example reveals that this may not be the case for �] when j =2 Ci (N;L).

Example 5.5. Consider the game (N;uT ) ; N = f1; 2; 3g ; T = f1; 2g ; and the graph
L = ;: It is easy to check that we then have �]3 (N;uT ; L) = 0 but �]3(N;uT ; L + 23) =

�1
4 :

However, �] satis�es the following component restricted version of LM for superaddi-

tive games.

Theorem 5.6 (Component restricted link monotonicity, CLM). If (N; v) is superad-

ditive then �] satis�es the following axiom: For all i; j 2 C 2 C (N;L) ;

'i (N; v; L+ ij) � 'i (N; v; L) :

The proof is prepared by a Lemma on the Myerson value and a Corollary. Obviously,

the axiom in Lemma 5.8 strengthens the following axiom which thus and also by Slikker

(2000) is satis�ed by �:

Axiom 5.7 (Improvement property, IP). If (N; v) is superadditive then 'k(N; v; L+ij)

> 'k (N; v; L) implies 'i (N; v; L+ ij) > 'i (N; v; L) or 'j (N; v; L+ ij) > 'j (N; v; L) for

all i; j 2 N and k 2 Nn fi; jg :

Lemma 5.8 (Strong improvement, SI). � satis�es the following axiom: If (N; v) is

superadditive then

'i (N; v; L+ ij)� 'i (N; v; L) � 'k (N; v; L+ ij)� 'k (N; v; L)

for all i; j; k 2 N:
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Proof. Let (N; v) be superadditive. Consider some i; j; k and the orders � and � on

N; � (i) = � (k) > � (k) = � (i) ; and � (`) = � (`) for ` 2 Nn fi; kg : By (2.3) and the
superadditivity of (N; v) ; we have

MCi
�
�; vL+ij

�
�MCi

�
�; vL

�
� 0 =MCk

�
�; vL+ij

�
�MCk

�
�; vL

�
: (5.3)

Further, we have

MCi
�
�; vL+ij

�
�MCi

�
�; vL

�
= vL+ij (Ki (�))� vL (Ki (�))

since i =2 S implies vL+ij (S) = vL (S) : Hence by Ki (�) = Kk (�), we have

MCk
�
�; vL+ij

�
�MCk

�
�; vL

�
= MCi

�
�; vL+ij

�
�MCi

�
�; vL

�
+vL (Ki (�) nk)� vL+ij (Ki (�) nk) :

Since C
�
Ki (�) nk; LjKi(�)nk

�
is �ner than C

�
Ki (�) nk; L+ ijjKi(�)nk

�
; the superadditiv-

ity of (N; v) and (2.3) imply vL (Ki (�) nk) � vL+ij (Ki (�) nk) ; i.e.

MCi
�
�; vL+ij

�
�MCi

�
�; vL

�
�MCk

�
�; vL+ij

�
�MCk

�
�; vL

�
: (5.4)

In view of (2.3) and (2.1), (5.3) and (5.4) together then prove the claim.

The following example shows that� as one would expect� �] neither satis�es SI nor
IP.

Example 5.9. Consider the CO-game (N;uT ; L) ; N = f1; 2; : : : ; 8g ; T = f1; 6; 7g ;
and L = f12; 23; 34; 45; 56; 78g : Simple but tedious calculations (or a bit of thinking) show

�]6 (N; v; L+ 67)� �
]
6 (N; v; L) =

1

7
� 2
9
= � 5

63
< 0

�]7 (N; v; L+ 67)� �
]
7 (N; v; L) =

1

7
� 1
6
= � 1

42
< 0

�]8 (N; v; L+ 67)� �
]
8 (N; v; L) = 0�

�
�1
6

�
=
1

6
> 0

Since uT is superadditive, SI is violated.

Again, �] satis�es a component restricted version of SI. By (3.2), j; k 2 Ci (N;L)

implies L+ ij (i) = L (i)+ ij = L (k)+ ij: Lemma 5.8 together with (4.1) then implies the

following Corollary.

Corollary 5.10 (Component restricted strong improvement, CSI). For superadditive

games, �] satis�es the following axiom: For all j; k 2 Ci (N;L) ; we have

'i (N; v; L+ ij)� 'i (N; v; L) � 'k (N; v; L+ ij)� 'k (N; v; L) :
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Proof. (Theorem 5.6) Let (v;N) be superadditive and j 2 Ci (N;L) : Suppose �]i(N; v;
L + ij) < �]i (N; v; L) : Since Ci (N;L) = Ci (N;L+ ij) and by Corollary 5.10, we then

had

0
CE
=

X
k2Ci(N;L)

�
�]k (N; v; L+ ij)� �

]
k (N; v; L)

�
< 0:

A contradiction.

5.4. Stable networks. Dutta et al. (1998) study network formation in superadditive TU
games by the following network formation game ('-NFG) which was formally introduced

by Myerson (1991, p. 448). Given a TU game (N; v) and a CO-value '; we consider

the strategic form game �': The player set is N and player i 2 N has the strategy set

Si = fsijsi � Nn figg : Any strategy pro�le s = (si)i2N 2 S :=
Q
i2N Si induces a graph

L (s) :=
�
ij 2 LN ji 2 sj ^ j 2 si

	
: The players� payo¤s are given by '; i.e. u'i (s) :=

'i (N; v; L (s)) : Dutta et al. (1998) consider a class of CO-values including � and then

apply some solution concepts to theses games: the Nash equilibrium, the undominated

Nash equilibrium (UNE), and the coalition-proof Nash equilibrium (CPNE). In order to

illustrate the di¤erence between the Myerson value and the �]-value, we focus on the Nash

equilibrium and the CPNE.

Bernheim, Peleg & Whinston (1987) de�ne the CPNE inductively: For all T � N

and sNnT 2 SNnT :=
Q
i2NnT Si; the game �

'
�
sNnT

�
consists of the players set T; the

strategy sets Si; i 2 T , and the payo¤ functions u'i
�
sNnT

�
; i 2 T where u'i

�
sNnT

�
(sT )

= u'i
�
sT ; sNnT

�
for all i 2 T and sT 2

Q
T Si: For jN j = 1; a strategy pro�le s� 2 S is

a CPNE if u'i (s
�
i ) maximizes u

'
i over S: For jN j > 1; a strategy pro�le s� 2 S is called

self-enforcing if for all T  N; s�T is a CPNE of �
'(s�NnT ): A strategy pro�le s

� is a CPNE

if it is self-enforcing and if there is no self-enforcing strategy pro�le s 2 S such that u'i (s)
> u'i (s

�) for all i 2 N:
Dutta et al. (1998, Proposition 1) show that any network can be supported by a Nash

equilibrium of the �-NFG. This may not be the case in the �]-NFG: In Example 5.5, the

Null player 3 can avoid the negative payo¤ under the graph f23g, by playing s3 = ; which
results in C3 (N;L (s)) = f3g and �]3

�
N;uf1;2g; L (s)

�
= 0: Hence in the �]-NFG; the Nash

equilibrium already allows for some useful predictions about which networks will prevail.

This also indicates that it is not too odd for a Null player to obtain a negative payo¤.

As with the �-value (Casajus 2009) and for the same reason, this does not speak against

our concept. A negative �]-payo¤ for a Null player under some cooperation structure

simply means that this cooperation structure never will evolve, i.e. it is not stable in any

reasonable sense.

Stronger solution concepts, UNE and CPNE, yield more clear cut general results. In

particular, Dutta et al. (1998, Theorems 1 and 2) show that the complete network may
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L � (N; v; L) �] (N; v; L)

; (0; 0; 0) (0; 0; 0)

f12g (18; 18; 0) (24; 12; 0)

f13g (12; 0; 12) (21; 0; 3)

f23g (0; 0; 0) (0; 3;�3)
f12; 13g (22; 10; 4) (22; 10; 4)

f12; 23g (18; 18; 0) (18; 18; 0)

f13; 23g (16; 4; 16) (16; 4; 16)

LN (22; 10; 4) (22; 10; 4)

Table 5.1. Payo¤s for the example

arise from a UNE or a CPNE of the �-NFG. Moreover, any UNE or CPNE of the �-NFG

leads to the same payo¤s as the complete network. The latter may not be the case in the

�]-NFG:

The following example illuminates the di¤erence between the Myerson value and the

�]-value concerning network formation. Consider the TU game with player set N =

f1; 2; 3g and the coalition function v given by

v (S) =

8>><>>:
0 ; S = f2; 3g _ jSj < 2;
24 ; S = f1; 3g
36 ; S = f1; 2g ; N:

(5.5)

It is easy to check that this game is superadditive but not convex. Straightforward calcu-

lations give the payo¤s listed in Table 5.1. For connected networks (the bottom four rows)

the �-payo¤s and the �]-payo¤s coincide since there are no outside options. The second

to fourth row show that �] accounts for outside option while � does not so. The Myerson

value splits the payo¤s of any two-player coalition equally among its members. Yet, if just

player 1 and 2 formed a link, for example, the �]-value rewards player 1�s outside option

to create the worth of 24 together with player 3� player 1 obtains a much higher payo¤

than player 2; �]1 = 24 > 12 = �]2: Similar for the other one-link networks. This makes a

big di¤erence concerning stability issues.

By Dutta et al. (1998, Theorem 2), the complete network LN can be supported by

the CPNE of the �-NFG where all players wish to form all links. In our example, one

easily checks that this is the unique such network. In the �]-NFG, besides the complete
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network, however, the network f12g is stable in this sense. Note that the resulting partition
ff1; 2g ; f3gg is the unique �-stable (Casajus 2009) coalition structure.

In the following, we frequently refer to the �]-payo¤s in Table 5.1 without mentioning

this explicitly. The network f12g can be supported by the CPNE s� = (f2g ; f1g ; ;) : Ob-
viously, there are no pro�table one-player deviations. Thus, (s�1; s

�
2) ; (s

�
1; s

�
3), and (s

�
2; s

�
3)

are self-enforcing in ��
]
(s�3), �

�] (s�2), and �
�] (s�1), respectively. In �

�] (s�1) ; there are two

other self-enforcing strategy pro�les involving the strategies s2 = f1; 3g and s3 = f2g or
s3 = f2; 3g. The resulting networks are f12g and f12; 23g ; respectively, which both result
in a zero payo¤ for player 3: Hence, (s�2; s

�
3) is a CPNE in �

�] (s�1) : Moreover, in �
�] (s�2) ;

just the links 12 and 13 can be formed. Since player 1 strictly prefers the network f12g
and since he can enforce it, (s�1; s

�
3) is self-enforcing and any other self-enforcing strategy

pro�le also gives the network f12g : Hence, (s�1; s�3) a CPNE in ��
]
(s�2) : In �

�] (s�3) ; the

players 1 and 2 just can form the link 12 or not but both prefer to do so. Therefore,

(s�1; s
�
2) is self-enforcing and all self-enforcing strategy pro�les lead to the network f12g :

Hence, (s�1; s
�
2) is a CPNE in �

�] (s�3) : Since player 1 strictly prefers the graph f12g over
all other graphs, s� is a CPNE of the �]-NFG.

One important thing about s� is that player 3 does not wish to form a link with player

2: At �rst glance, this seems to be odd. But since player 1 does not wish to form a link

with player 3; there is� in principle� the possibility that player 2 just wishes to form a

link with player 3: In this case, player 3 prefers to be isolated and to obtain a zero payo¤

since under the network f23g his payo¤ were negative. Moreover, player 3 does not gain
by forming the link 23: Hence, if there were (even very small) costs for establishing links

as studied by Slikker & van den Nouweland (2000), then player 3 would prefer not to form

this link.

However, the fact that players 1 and 2 both gain by deviating from the complete

network does not prevent it from being supported by a CPNE. Let �s denote the unique

strategy pro�le that creates LN : Obviously, there are no pro�table one-player deviations.

Thus, (�s1; �s2) ; (�s1; �s3), and (�s2; �s3) are self-enforcing in ��
]
(�s3), ��

]
(�s2), and ��

]
(�s1),

respectively. Moreover, in ��
]
(�s3), there is no other such strategy pro�le. In particu-

lar, player 2 can pro�tably deviate from (s1; s2) = (f2g ; f1g) by choosing �s2: Therefore,
(�s1; �s2) is a CPNE in ��

]
(�s3) : In ��

]
(�s2) ; there is one other self-enforceable strategy

combination, (s1; s3) = (f2g ; f2g) ; but which is dominated by (�s1; �s3) : Hence, (�s1; �s3) is
CPNE in ��

]
(�s2) : In ��

]
(�s1) ; again, there is one other self-enforceable strategy combi-

nation, (s2; s3) = (f1g ; f1g) ; but which gives the same payo¤s as (�s1; �s3) : Hence, (�s2; �s3)
is CPNE in ��

]
(�s1) : Since there is no other network where all players gain, �s is a CPNE.
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6. Conclusion

In this paper, we introduced and advocated a CO-value, �]; which combines the ideas

underlying the Myerson value and the �-value. In contrast to the Myerson value, this

value accounts for the outside options of the players. This way, �] may recognize e.g.

the potential competition between linking agents. In Section 5.4, we have demonstrated

that network formation under the �]-value and under the Myerson value, respectively,

may lead to di¤erent networks. Moreover, this di¤erence may be related to �-stability.

Hence, further research on stability under the �]-value, both in general and in speci�c

applications, and on their relation to �-stability and to stability under the Myerson value

seems to be worthwhile.

The Myerson value was extended by van den Nouweland, Borm & Tijs (1992) to the

class of TU games with a conference structure (hypergraph on the player set) (henceforth

CF-games and CF-value) which we will call the Myerson CF-value. Since the characteriza-

tion of the Myerson CF-value is analogous to that of the Myerson value, slightly adapting

the arguments of this paper and of van den Nouweland et al. (1992), it should be hardly

more than a �ve-�nger exercise to extend our CO-value into a CF-value with analogous

properties.
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CHAPTER VII

An e¢ cient value for TU games with a cooperation

structure

This Chapter was submitted for publication in the International Journal of Game

Theory in September 2006.

Abstract

In this note, we introduce and characterize an e¢ cient value for TU games with

a cooperation structure which generalizes the Owen (1977) value for games with a

coalition structure but which does not deviate too much from the Myerson (1977)

value.

Key Words: E¢ ciency, Consistency, Graph, Owen value, Myerson value

JEL classi�cation: C71

108



VII.1. INTRODUCTION 109

1. Introduction

Consider the TU game with the player set N = fP1; P2; P3; Ag and the coalition
function given by

v (K) =

8<: 1 ; jK \ fP1; P2; P3gj > 1;
0 ; jK \ fP1; P2; P3gj � 1;

;K � N:

A is a Null player and the presence of any two of the productive players P1; P2; and

P3 already su¢ ces to produce the worth of 1: Suppose all these players cooperate in

order to create the grand coalition�s worth of v (N) = 1. If the players do not form any

coalitions when bargaining on the distribution of v (N) ; then, for symmetry reasons, one

would expect an equal split between the three productive players. Would/should this split

change if P1 and P2 formed a bargaining bloc? What if these players could form this bloc

only via the Null player A?

As an answer to questions like the �rst one, Owen (1977) introduces and axiomatizes

an e¢ cient value for games with a coalition structure (partition of the player set). Hart

& Kurz (1983, 1984) provide alternative axiomatizations and explore stability issues with

respect to the Owen value. In our leading example, the Owen value assigns the payo¤ 1
2 to

P1 and to P2 while P3 and A get nothing. Since the players P1 and P2 already produce

the grand coalition�s worth and since they bargain as one person as well as for symmetry

reasons, this �ts nicely with our intuitions.

Yet, the Owen value may not give an adequate answer to the second type of questions.

If P1 and P2 need A in order to form a bargaining bloc then one could argue that�

despite being a Null player� A should obtain a positive payo¤. However, adding A to the

bloc formed by P1 and P2 does not a¤ect the Owen payo¤s. One reason for this is that

coalition structures are too coarse structures. From the coalition fP1; P2; Ag alone one
cannot infer whether A is necessary to connect the productive players P1 and P2 or not.

The necessity of A can be modelled by the undirected graph

P1

� � �

A

� � �

P2

�
P3

�
(1.1)

where P1 and P2 are connected but only via a chain of links involving A: Of course,

this transcends the world of coalition structures and leads into the realm of cooperation

structures (undirected graphs).

Generalizing the Shapley (1953) value for TU games and the Aumann & Drèze (1974)

value for TU games with a coalition structure, Myerson (1977) introduced a value for TU
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games with a cooperation structure (henceforth CO-games and CO-value). As an alter-

native, Meessen (1988) suggests the position value for CO-games which was popularized

by Borm et al. (1992). Yet another CO-value has been introduced by Hamiache (1999)

which was discussed by Bilbao, Jiménez & López (2006). All these CO-values have in

common that they are component e¢ cient. In contrast to e¢ ciency, this corresponds to

the interpretation of connected components as productive units. In the following, we focus

on the Myerson value as the most eminent one of these CO-values.

Since in our leading example the connected component fP1; P2; Ag already produces
v (N) ; the Myerson payo¤s for the graph in (1.1) actually are e¢ cient, but this is rather

accidental. Just increase v (N) by a small amount. Moreover, for the empty graph, the

Myerson payo¤s vanish due to component e¢ ciency. Hence one would like to have an

e¢ cient CO-value which recognizes, for example, the coordinating role of player A in the

situation above.

This is what this paper aims at. We introduce and axiomatize a CO-value that gener-

alizes the Owen value to the class of CO-games and which, in a sense, does not deviate too

much from the Myerson value. More speci�c, our CO-value coincides with the Owen value

for completely connected components and coincides with the Myerson value for connected

graphs. For the graph (1.1) in our leading example, that CO-value assigns the payo¤s 'P1
= 'P2 =

5
12 ; 'A =

1
6 , and 'P3 = 0 which meet our intuitions concerning player A:

The axiomatization involves four axioms. Besides e¢ ciency, we require our CO-value

to assign the same payo¤s for the complete graph as for the empty graph. Further, merging

connected components into single players should not a¤ect the component�s payo¤s. Fi-

nally, we modify the Myerson fairness axiom such that the number of components involved

is not a¤ected by removing a link. Yet, the player set involved may shrink.

The plan of this paper is as follows: Basic de�nitions and notation are given in second

section. In the third section, we discuss some axioms related to CO-values. Our CO-

value is introduced and axiomatized in the fourth section. The �fth section explores the

relation of our CO-value to the Myerson value and to the Owen value as well as consistency

properties, and touches stability issues. A few remarks conclude the paper.

2. Basic de�nitions and notation

In order to avoid set theoretic complications, we assume that there is a large enough

set U that contains the names of the players. A (TU) game is a pair (N; v) consisting of a
non-empty and �nite set of players N � U and a coalition function v : 2N ! R; v (;) = 0:
In general, we consider the set of all TU games, possibly equipped with some additional

structure. v (K) is called the worth of K � N ; subsets of N are called coalitions. For ; 6=
T � N; the game (N;uT ), uT (K) = 1 if T � K and uT (K) = 0 otherwise, is called a
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unanimity game. The sum v + v0 of two coalition functions on N is given by (v + v0) (K)

= v (K) + v0 (K) for all K � N ; vjN 0 denotes the restriction of v to N 0 � N: A game is

called superadditive i¤ v (K [K 0) � v (K) + v (K 0) for all K;K 0 � N; K \K 0 = ;:
A value is an operator ' that assigns payo¤ vectors ' (N; v) 2 RN to all games (N; v) ;

N � U : An order of a set N is a bijection � : N ! f1; : : : ; jN jg with the interpretation
that i is the � (i)th player in �. The set of these orders is denoted by � (N) : The set

of players not after i in � is denoted by Ki (�) = fj 2 N : � (j) � � (i)g : The marginal
contribution of i in � is de�ned as MCvi (�) := v (Ki (�))� v (Ki (�) n fig) : The Shapley
(1953) value Sh is de�ned by

Shi (N; v) := j� (N)j�1
X

�2�(N)
MCvi (�) ; i 2 N: (2.1)

For K � N; we denote by 'K (N; v; �) the sum
P

i2K 'i (N; v; �) :
A coalition structure for (N; v) is a partition P � 2N where P (i) denotes the cell

containing player i: We denote by hSi ; S � N the atomistic partition on S; hSi :=
ffig ji 2 Sg : By PjN 0 we denote the restriction of the partition P on N to N 0 � N;

PjN 0 := fP (i) \N 0ji 2 N 0g : A CS-game is a game together with a coalition structure,

(N; v;P) : A CS-value is an operator ' that assigns payo¤ vectors ' (N; v;P) 2 RN to all

CS-games (N; v;P) ; N � U : For any coalition structure P on N; we de�ne a subset

� (N;P) := f� 2 � (N) j8i; j 2 P (i) : j� (i)� � (j)j < jP (i)jg (2.2)

of � (N) : The Owen (1977) value is given by

Owi (N; v;P) := j� (N;P)j�1
X

�2�(N;P)
MCvi (�) ; i 2 N: (2.3)

Any � 2 � (N;P) uniquely determines some �jP 2 � (P) and �jP 2 � (P ) ; P 2 P such

that �jP (P (i)) < �jP (P (j)) i¤ � (i) < � (j) for all i; j 2 N or �jP (i) < �jP (j) i¤ � (i)
< � (j) for all i; j 2 P , respectively. For �i 2 � (P (i)) and � 2 � (P) ; we set

� (N;P; �i; �) :=
�
� 2 � (N;P) j�jP = � ^ �jP(i) = �i

	
: (2.4)

A cooperation structure for (N; v) is an undirected graph (N;L) ; L � LN := ffi; jg j
i; j 2 N; i 6= jg: A typical element of L is written as ij. Given any graph (N;L) ; N splits

into (maximal connected) components the set of which is denoted by C (N;L); Ci (N;L)

2 C (N;L) denotes the component containing i 2 N: LjN 0 = ffi; jg 2 Lji; j 2 N 0g de-
notes the restriction of L to N 0 � N: For any partition P � 2N ; LP denotes the graphS
P2P L

P which splits in the completely connected components in C
�
N;LP

�
= P:

A CO-game is a game together with a cooperation structure. A CO-value is an operator

' that assigns payo¤ vectors ' (N; v; L) 2 RN to all CO-games (N; v; L) ; N � U : The
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Myerson (1977) value � is de�ned by

� (N; v; L) := Sh
�
N; vL

�
; vL (K) :=

X
S2C(K;LjK)

v (S) ;K � N: (2.5)

3. Axioms for CO-values

In this section, we consider several axioms for CO-values with respect to bargaining

within the grand coalition.

Axiom 3.1 (Additivity, A). ' (N; v + v0; L) = ' (N; v; L) + ' (N; v0; L) :

From a mathematical viewpoint, additivity is nice axiom which is satis�ed by quite a

lot of values for TU games with or without additional structures and which is part of many

axiomatizations. Nevertheless, additivity does not re�ect any fairness considerations and

therefore one may wish to avoid explicit reference to this property.

Axiom 3.2 (E¢ ciency, E). 'N (N; v; L) = v (N) :

We feel that the e¢ ciency axiom presupposes the grand coalition to be the productive

unit which creates its worth v (N). This corresponds to the interpretation of the con-

nected components of L as bargaining blocs which are formed via bilateral agreements or

communication channels.

Axiom 3.3 (Component e¢ ciency, CE). For all C 2 C (N;L) ; we have

'C (N; v; L) = v (C) :

Component e¢ ciency evokes another interpretation of the graph L: In order to coop-

erate in the production of worth, players have to be connected via a chain of links. Hence,

the connected components C of L are the productive units which produce their worth

v (C) :

Axiom 3.4 (Fairness, F). For all ij 2 L; we have

'i (N; v; L)� 'i (N; v; L� ij) = 'j (N; v; L)� 'j (N; v; L� ij) :

CE and F are the original axioms that characterize the Myerson value. The very

nice fairness axiom F has strong consequences far beyond pure fairness considerations. In
particular, van den Nouweland (1993, pp. 28) shows that � satis�es the following axiom

which says that (distribution of) payo¤s within a component is not a¤ected by the players

outside. In general, of course, CD and E are incompatible.

Axiom 3.5 (Component decomposability, CD). For all i 2 N;

'i (N; v; L) = 'i
�
Ci (N;L) ; vjCi(N;L); LjCi(N;L)

�
:
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Axiom 3.6 (Equivalence, Q). '
�
N; v; LN

�
= ' (N; v; ;) :

This axiom says that� from the bargaining viewpoint� it does not make a di¤erence

whether the players do not form any (bargaining) components (L = ;) or they form just

one such component where all players are completely connected (L = LN ). Note that

the Owen value has a similar property: The Owen payo¤s for P = fNg and P = hNi
coincide. We feel that Q as a natural generalization of that property should be satis�ed

by an e¢ cient CO-value.

Axiom 3.7 (Modi�ed fairness, MF). For all ij 2 L;

'i (N; v; L)� 'i
�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
= 'j (N; v; L)� 'j

�
Nj (L; ij) ; vjNj(L;ij)LjNj(L;ij)

�
where

Ni (L; ij) := Nn (Ci (N;L) nCi (N;L� ij)) : (3.1)

MF is intended to replace the fairness axiom F. It is trivially satis�ed if Ci (N;L) does
not split by removing the link ij since then Ni (L; ij) = N . Otherwise, Ci (N;L) splits

into two disjoint components. In this case, Ni (L; ij) = NnCj (N;L� ij) ; i.e. the players
in j�s component are removed from N . Hence, and this seems to be one important thing

aboutMF, all graphs involved have the same number of connected components while the
number of players may di¤er. We feel that this modi�cation of F �ts nicely with the

interpretation of the graph L as a device to model structured bargaining blocs. Compare

this with F. There, the player set involved is �xed at N but removing a link may increase

the number of components. Note also the role of MF in the proof of the consistency

property of the CO-value to be introduced in Theorem 5.5. Further, compare the player

set in (3.1) with those in (5.2) and (5.4).

Axiom 3.8 (Component merging, CM). For all C 2 C (N;L) ; we have

'C (N; v; L) = 'C (C (N;L) ; v � [; ;)

where v � [ (K) = v
�S

S2K S
�
for all K � C (N;L) :

CM says the distribution of worth among the components depends only on the game

between coalitions, (C (N;L) ; v � [) ; which are completely disconnected. This could be
paraphrased as that merging all connected components into single players does not a¤ect

the component�s payo¤s. I.e. the inner structure of the components does not matter in

this respect. What matters is just the fact that they are connected. Note that CM is

very similar to Owen�s (1977) axiom A3.

Of course, instead of CM one could think of a more graph-related axiom which requires

the component�s payo¤s not to be a¤ected by in�ating links, i.e. by merging directly
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connected players i and j; i.e. ij 2 L; removing the resulting loop at ij, and identifying

parallel links. Yet, this would imply CM by successively merging links. The other way

round, in�ating links is equivalent to CM if one assumes invariance under the renaming

of players.

4. A generalization of the Owen value

In this section, we show that some of the axioms advocated in the previous section,

in particular E, Q, MF, and CM, already characterize a CO-value which satis�es the
remaining such axioms. Further, the non-redundancy of our axiomatization is established.

4.1. Uniqueness. We �rst consider connected graphs, i.e. all players are contained in
one bargaining bloc. In this case, one could argue that the distribution of the grand

coalition�s worth should be governed by the inner structure of that single bloc and the

fairness considerations embodied in the Myerson value. Yet, this is already implied by E
and MF.

Lemma 4.1. If a CO-value ' satis�es E and MF then it coincides with � on all

connected graphs.

Proof. We �rst note that for connected graphs MF involves connected graphs only. �
satis�es CE which for connected graphs becomes E. We also have

�i (N; v; L)� �j (N; v; L)

CD
= �i

�
Ci (N;L) ; vjCi(N;L); LjCi(N;L)

�
� �j

�
Cj (N;L) ; vjCj(N;L); LjCj(N;L)

�
= �i

�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
� �j

�
Nj (L; ij) ; vjNj(L;ij); LjNj(L;ij)

�
for ij 2 L where the second equation follows from Ci (N;L) = Ci(Ni (L; ij) ; LjNi(L;ij))
and the analogon for j: Hence, � satis�es MF.

We mimic the Myerson (1977) proof of uniqueness. Suppose ' and �' both satisfy E
and MF. Suppose N is a minimal player set such that ' and �' di¤er on a connected

graph. Further, suppose L is a minimal connected graph on N such that they do so. By

CE, L contains at least one edge. If j 2 Ci (N;L� ij) then MF and the minimality of
L imply 'i (N; v; L)� 'j (N; v; L) = �'i (N; v; L)� �'j (N; v; L) : And if j =2 Ci (N;L� ij)
then againMF and the minimality of N imply 'i (N; v; L)�'j (N; v; L) = �'i (N; v; L)�
�'j (N; v; L) : Since L is connected, we have 'i (N; v; L)� �'i (N; v; L) = � for some � and

all i 2 N: E then implies � = 0: Contradiction.

Applying this Lemma and again the Myerson technique, we are now able to approach

the general case.
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Theorem 4.2. There is at most one CO-value that satis�es E, Q, MF, and CM.

In view of their role in the proof below, one could of course merge Q and CM into a

single axiom. However, we feel that the two axioms refer to essentially di¤erent consider-

ations. While Q basically is as a very weak expression of invariance with respect to the

renaming of players, CM requires the payo¤ of the components to be independent of their

inner structure.

Proof. Let ' be a CO-value that satis�es E, Q,MF, and CM. By CM and Q, we have

'C (N; v; L) = 'C

�
C (N;L) ; v � [; LC(N;L)

�
for all C 2 C (N;L) : Since

�
C (N;L) ; LC(N;L)

�
is connected, Lemma 4.1 implies

'C (N; v; L) = �C

�
C (N;L) ; v � [; LC(N;L)

�
: (4.1)

Again, we mimic the Myerson (1977) proof of uniqueness. Suppose there were two

CO-values, ' and �'; that satisfy E, Q, MF, and CM. Let N be a minimal player set

such that ' 6= �' and let L be a minimal graph on N such that they do so. By E, N then

contains more than one player, and by Q and Lemma 4.1, L contains at least one link. If

Ci (N;L) = fig ; then 'i (N; v; L) = �'i (N; v; L) by (4.1). For ij 2 LjCi(N;L), we have

'i (N; v; L)� 'j (N; v; L)

= 'i
�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
� 'j

�
Nj (L; ij) ; vjNj(L;ij); LjNj(L;ij)

�
= �'i

�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
� �'j

�
Nj (L; ij) ; vjNj(L;ij); LjNj(L;ij)

�
= �'i (N; v; L)� �'j (N; v; L)

byMF, the minimality ofN and L; and againMF. Thus, we have 'j (N; v; L)��'j (N; v; L)
= 'k (N; v; L)��'k (N; v; L) for all j; k 2 Ci (N;L) : In view of (4.1), this implies 'j (N; v; L)
= �'j (N; v; L) for all j 2 Ci (N;L) : A contradiction.

4.2. Existence. We show that there exists a CO-value that combines the Owen value

(distribution between components) and the Myerson value (distribution within compo-

nents) which satis�es our set of axioms.

Theorem 4.3. There is a CO-value that satis�es E, Q, MF, and CM.

Proof. Consider the CO-value ' given by

'i (N; v; L) := j� (C (N;L))j�1
X

�2�(C(N;L))
�i

�
Ci (N;L) ; v

�
Ci(N;L)

; LjCi(N;L)
�

(4.2)
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where v�C is given by

v�C (S) := v

0BBB@S [ [
C02C(N;L):
�(C0)<�(C)

C 0

1CCCA� v
0BBB@ [
C02C(N;L):
�(C0)<�(C)

C 0

1CCCA ; S � C (4.3)

for all C 2 C (N;L) : We then haveX
i2N

'i (N; v; L) = j� (C (N;L))j�1
X

�2�(C(N;L))

X
C2C(N;L)

�C (C; v
�
C ; LjC)

= j� (C (N;L))j�1
X

�2�(C(N;L))

X
C2C(N;L)

v�C (C)

= j� (C (N;L))j�1
X

�2�(C(N;L))
v (N)

= v (N)

by (4.2) and changing the order of summation, by the fact that (C;LjC) is connected for
C 2 C (L;N) and that � is component e¢ cient, and by (4.3). Hence, ' satis�es E.

For L = ;, we have Ci (N;L) = fig ; hence C (N;L) �= N and � (C (N;L)) �= �(N) ;
and therefore

'i (N; v; ;) = j� (C (N;L))j�1
X

�2�(C(N;L))
�i (fig ; v�i ; ;)

= j� (N)j�1
X

�2�(N)
v�i (i)

= j� (N)j�1
X

�2�(N)
MCvi (�)

= Shi (N; v)

by (4.2), again by the fact that (fig ; ;) is connected and that � is component e¢ cient, by
(4.3) and the de�nition of MCvi (�) ; and by (2.1). Further, by (4.2) and (4.3), we have

'
�
N; v; LN

�
= �

�
N; v; LN

�
since

�
N;LN

�
is connected. Since �

�
N; v; LN

�
= Sh (N; v)

(Myerson 1977), ' also satis�es Q.

Next, we show that ' satis�es CM. In view of (4.2), it su¢ ces to show that

�C (C; v
�
C ; LjC) = �fCg

�
fCg ; (v � [)�fCg ; ;

�
for all C 2 C (N;L) and � 2 � (C (N;L)) : Since � is component e¢ cient and (C;LjC) as
well as (fCg ; ;) are connected for C 2 C (N;L) in general, this is equivalent to v�C (C) =
(v � [)�fCg (fCg) which holds by (4.3).
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Finally, we show that ' satis�es MF. In view of (4.2) and (4.3), it su¢ ces to show
that

�i

�
Ci (N;L) ; v

�
Ci(N;L)

; LjCi(N;L)
�
� �i

�
Ci (N;L� ij) ; v�Ci(N;L); LjCi(N;L�ij)

�
= �j

�
Cj (N;L) ; v

�
Cj(N;L)

; LjCi(N;L)
�
� �j

�
Cj (N;L� ij) ; v�Cj(N;L); LjCi(N;L�ij)

�
holds for all ij 2 L: Yet, this follows from � satisfying F and CD.

Below, we show that the value de�ned by (4.2) and (4.3) is a generalization of the

Owen value. This may justify the notation Ow] where the musical �sharp� symbol ] is

intended to indicate a graph.

4.3. Non-redundancy. Next, we show that our axiomatization is non-redundant. Since
by Theorem 4.2 and 4.3 Ow] is characterized by E, Q, MF, and CM, it su¢ ces to show
that there are CO-values that are di¤erent from Ow] but satisfy any three of theses axioms.

The CO-value ' 6= Ow] given by 'i (N; v; L) = 0 for all i 2 N satis�esMF, CM, and Q.
From our leading example it is clear that Ow] and Ow applied to the coalition structure

C (N;L) do not coincide. Yet, the latter satis�es E, CM, and Q. Also, the CO-value
' 6= Ow] given by 'i (N; v; L) = jN j�1 v (N) for all i 2 N satis�es E,MF, and Q. Finally,
consider the CO-value ' 6= Ow] given by

'i (N; v; L) := �i (N; v; L) +
v (N)�

P
C2C(N;L) v (C)

jC (N;L)j jCi (N;L)j
: (4.4)

Since � satis�es CE, we have

'Ci(N;L) (N; v; L) = v (Ci (N;L)) +
v (N)�

P
C2C(N;L) v (C)

jC (N;L)j ; (4.5)

i.e. 'Ci(N;L) (N; v; L) depends only on the worth of the components in C (N;L) and

jC (N;L)j which are not a¤ected by considering components as players: Hence, ' satis�es
CM. Summing up (4.5) over C (N;L) then shows 'N (N; v; L) = v (N) ; i.e. ' satis�es E.
Further, we have

'i (N; v; L)�'j (N; v; L)

(4.4)
= �i (N; v; L)� �j (N; v; L)

�;CD
= �i

�
Ci (N;L) ; vjCi(N;L); LjCi(N;L)

�
� �j

�
Cj (N;L) ; vjCj(N;L); LjCj(N;L)

�
�;F
= �i

�
Ci (N;L� ij) ; vjCi(N;L�ij); LjCi(N;L�ij)

�
��j

�
Cj (N;L� ij) ; vjCj(N;L�ij); LjCj(N;L�ij)

�
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�;CD
= �i

�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
� �j

�
Nj (L; ij) ; vjNj(L;ij); LjNj(L;ij)

�
(4.4)
= 'i

�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
� 'j

�
Nj (L; ij) ; vjNj(L;ij)LjNj(L;ij)

�
which �nally shows that ' also satis�es MF.

4.4. An example. Concluding this section, we reconsider our leading example with the
graph in (1.1). There are two orders, � and �; on C (N;L) = fC; fP3gg, C = fP1; P2; Ag
where � (C) = 1 and � (C) = 2: By (4.3), this gives the payo¤ functions v�C (S) = v (S) ;

S � C and

v�C (S) = v (S [ fP3g)� v (fP3g) =

8<: 1 ; jS \ fP1; P2gj > 0
0 ; jS \ fP1; P2gj = 0

S � C:

Straightforward calculations in accordance with (2.5) yield the Myerson payo¤s

�(P1;P2;A) (C; v
�
C ; LjC) =

�
1

3
;
1

3
;
1

3

�
and �(P1;P2;A)

�
C; v�C ; LjC

�
=

�
1

2
;
1

2
; 0

�
:

By (4.2), this gives the payo¤s

Ow](P1;P2;P3;A) (N; v; L) =

�
5

12
;
5

12
; 0;
1

6

�
as in the Introduction where the payo¤ for P3 is immediate from E.

5. Properties

5.1. Relation to the Myerson value and to the Owen value. From (4.2) and (4.3) it
is easy to see that Ow] and � coincide on connected graphs and thatOw] inherits additivity

from the Myerson value in general. The axiomatizations for the Owen value of Owen (1977)

itself as well as those of Hart & Kurz (1983) involve the additivity axiom. Khmelnitskaya &

Yanovskaya (2007) characterize the Owen value without additivity by employing the Young

(1985) marginality axiom. Vázquez-Brage, García-Jurado & Carreras (1996) suggest a

generalization of both the Owen and the Myerson value the axiomatization of which also

does not involve the additivity axiom. However, their value refers to TU games with

both a coalition structure and a cooperation structure. For the complete graph, this value

coincides with the Owen value, but if the coalition structure equals the set of the graph�s

components then the Myerson value results. Hence, that value and our value are essentially

di¤erent. Yet, in view of the following Theorem, our value indeed extends the Owen value

to CO-games and therefore provides another justi�cation of the Owen value without the

additivity axiom.

Theorem 5.1. Ow]
�
N; v; LP

�
= Ow (N; v;P) :
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Proof. Since Ci
�
N;LP

�
= P (i) ; we have

Ow]i
�
N; v; LP

�
(4.2)
= j� (P)j�1

X
�2�(P)

�i

�
P (i) ; v�P(i); L

P(i)
�

(5.2)
= j� (P)j�1

X
�2�(P)

Shi

�
P (i) ; v�P(i); L

P(i)
�

(2.1)
= j� (P)j�1

X
�2�(P)

j� (P (i))j�1
X

�i2�(P(i))
MC

v�P(i)
i (�i)

(4.3),(2.4)
= j� (P)j�1

X
�2�(P)

j� (P (i))j�1
X

�i2�(P(i))
j� (N;P; �i; �)j�1

X
�2�(N;P;�i;�)

MCvi (�)

(2.4)
= j� (N;P)j�1

X
�2�(N;P)

MCvi (�)

(2.3)
= Owi (N; v;P)

for all i 2 N:

Since the Owen value and the Shapley value coincide for P = fNg and P = hNi the
following property is immediate.

Corollary 5.2. Ow]
�
N; v; LN

�
= Ow] (N; v; ;) = Sh (N; v) :

Finally, CM and Q then imply that the distribution of the grand coalition�s worth

between components is governed by the same principles for Ow] and Ow :

Corollary 5.3. For all C 2 C (N;L) ; Ow]C (N; v; L) = OwC (N; v;C (N;L)) :

5.2. Consistency. Owen (1977) shows that for Ow the distribution of worth between

coalitions and within coalitions is governed by the same principles. In particular, he shows

that his value satis�es the following consistency property:

Theorem 5.4 (Owen 1977). For all i 2 N; we have

Owi (N; v;P) = Owi
�
P (i) ; vN;PP(i); fP (i)g

�
= Owi

�
P (i) ; vN;PP(i); ;

�
(5.1)

where the coalition function vN;PP on P 2 P is de�ned by

vN;PP (S) := OwS
�
Nn (PnS) ; vjNn(PnS);PjNn(PnS)

�
; S � P: (5.2)

Ow] satis�es a similar consistency property. In view of fP (i)g = PjP(i); the following
Theorem is the obvious analogon to Theorem 5.4. Since the components of P have no

inner structure, however, there is no such analogon to the second equation in (5.1).
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Theorem 5.5. We have Ow] = Ow# where the CO-value Ow# is de�ned by

Ow#i (N; v; L) = Ow
]
i

�
Ci (N;L) ; v

N;L
Ci(N;L)

; LjCi(N;L)
�

; i 2 N (5.3)

where the coalition functions vN;LC on C 2 C (N;L) are de�ned by

vN;LC (S) := Ow]S
�
Nn (CnS) ; vjNn(CnS); LjNn(CnS)

�
; S � C: (5.4)

Proof. By Theorems 4.2 and 4.3, it su¢ ces to show that Ow# satis�es E, Q, MF, and
CM. Since Ow] satis�es E and by (5.3) and (5.4), we have Ow#C (N; v; L) = Ow

]
C (N; v; L)

for all C 2 C (N;L) : Therefore, Ow# inherits E and CM from Ow].

In order to show Q, we prove Ow# (N; v; ;) = Sh (N; v) = Ow#
�
N; v; LN

�
: The �rst

equation follows from

Ow#i (N; v; ;)
(5.3)
= Ow]i

�
fig ; vN;Lfig ; ;

�
(5.4)
= vN;Lfig (fig)

(5.4)
= Ow]i (N; v; ;)

Thm. 5.1
= Owi (N; v; hNi)

Cor. 5.2
= Shi (N; v) :

By (5.3), Theorem 5.1, and (5.4), we have vN;fNgN (S) = vN;L
N

N (S) for all S � N: Since

Ow#i
�
N; v; LN

� (5.3)
= Ow]i

�
N; vN;L

N

N ; LN
�
Thm. 5.1
= Owi

�
N; vN;L

N

N ; fNg
�
;

Theorem 5.4 impliesOw#i
�
N; v; LN

�
= Owi (N; v; fNg) :Hence, Ow#

�
N; v; LN

�
= Sh (N; v)

by Theorem 5.1 and Corollary 5.2.

Let now ij 2 L and C := Ci (N;L) : We then have

Ow#i (N; v; L)�Ow
#
j (N; v; L)

(5.3)
= Ow]i

�
C; vN;LC ; LjC

�
�Ow]j

�
C; vN;LC ; LjC

�
MF
= Ow]i

�
Ci (N;L� ij) ; vN;LC jCi(N;L�ij); LjCi(N;L�ij)

�
�Ow]j

�
Cj (N;L� ij) ; vN;LC jCj(N;L�ij); LjCj(N;L�ij)

�
and

Ow#i
�
Ni (L; ij) ; vjNi(L;ij); LjNi(L;ij)

�
�Ow#j

�
Nj (L; ij) ; vjNj(L;ij); LjNj(L;ij)

�
(5.3)
= Ow]i

�
Ci (N;L� ij) ; v

Ni(L;ij);LjNi(L;ij)
Ci(N;L�ij) ; LjCi(N;L�ij)

�
�Ow]j

�
Cj (N;L� ij) ; v

Nj(L;ij);LjNi(L;ij)
Cj(N;L�ij) ; LjCj(N;L�ij)

�
:

Since Ci (N;L� ij) � C and by (5.4), we also have

vN;LC jCi(N;L�ij) (S) = Ow
]
S

�
Nn (CnS) ; vjNn(CnS); LjNn(CnS)

�
= v

Ni(L;ij);LjNi(L;ij)
Ci(N;L�ij) (S)

for all S � Ci (N;L� ij) ; analogously for j: Hence, Ow# satis�es MF.
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S LjNn(CnS) [ LjCnS LjNn(CnS) [ LCnS LjNn(CnS) (k)vN;LN (S)

f1g f23g f23g ; 1

f2g ; f13g ; 1
2

f3g f12g f12g ; 1
2

f1; 2g f12g f12g f12g 3
2

f1; 3g ; ; ; 3
2

f2; 3g f23g f23g f23g 1

N L L L 2

Table 5.1. Graphs and worths for the counterexample

In addition, Hart & Kurz (1983) show that for Ow the distribution of worth between

coalitions is consistent with the distribution within coalitions in the following sense.

Theorem 5.6 (Hart and Kurz 1983). Theorem 5.4 remains true if we replace the

coalition function vN;PP ; P 2 P by either of the following ones: For all S � P

(1)vN;PP (S) := OwS (N; v; (Pn fPg) [ fS; PnSg) (5.5)

(2)vN;PP (S) := OwS (N; v; (Pn fPg) [ fSg [ hPnSi) (5.6)

The following conjecture tries to transfer the results of Theorem 5.6 to Ow] : In (5.5),

the component P 2 P is split into the components S; PnS � P: In a sense, all �links�

between the players in S and those in PnS have been removed. This is the idea of (5.7):
Now, the links between players in S � C 2 C (N;L) and CnS have been removed indeed.
The idea of (5.8) is the same except that the players in CnS are completely connected
which, of course, did not make a di¤erence for coalition functions. In (5.6), the players in

S are also separated from those in PnS but the players in PnS are isolated, i.e. they form
singleton coalitions. (5.9) mimics this by removing all links outside Nn (CnS) :

Conjecture 5.7. Theorem 5.5 remains true is we replace the coalition function vN;LC ;

C 2 C (N;L) by either of the following ones: For all S � C

(1)vN;LC (S) := Ow]S
�
N; v; LjNn(CnS) [ LjCnS

�
(5.7)

(2)vN;LC (S) := Ow]S

�
N; v; LjNn(CnS) [ LCnS

�
(5.8)

(3)vN;LC (S) := Ow]S
�
N; v; LjNn(CnS)

�
(5.9)

As the following example reveals, however, this conjecture is wrong.



VII.6. CONCLUSION 122

Example 5.8. Set N = f1; 2; 3g ; L = f12; 23g and v = uf1;2g + uf1;3g: Since L is

connected, one easily obtains Ow] (N; v; L) = � (N; v; L) =
�
5
6 ;
5
6 ;
1
3

�
: Table 5.1 lists the

graphs and worths involved in Conjecture 5.7 where the payo¤ functions coincide. Again,

one easily obtains Ow# (N; v; L) = Ow]N
�
N; (k)vN;LN ; L

�
= �

�
N;(k) vN;LN ; L

�
=
�
1; 12 ;

1
2

�
:

I.e., Ow# 6= Ow] :

5.3. Stability issues. Employing the Owen value, Hart & Kurz (1983) study coalition

formation in CS-games by strong equilibria of simultaneous coalition formation games.

Yet, Hart & Kurz (1984) provide examples of TU games that do not allow for stable

coalition structures. Dutta et al. (1998) study link formation in CO-games by simultaneous

link formation games which involve the Myerson value. For superadditive games, they

show that the complete network can be supported by undominated Nash equilibria and

coalition proof Nash equilibria and that any such equilibrium yields the same payo¤s.

Partly, this result rests on the following axiom which � satis�es for superadditive games

(Myerson 1977).

Axiom 5.9 (Link monotonicity, LM). For all i; j 2 N;

'i (N; v; L+ ij) � 'i (N; v; L) :

As the following example reveals, Ow] fails this axiom.

Example 5.10. Consider the game (N;uN ) ; N = f1; 2; 3g which is superadditive
and the graph L = ;: It is easy to check that we then have Ow]1

�
N;uf1;2g; L

�
= 1

3 but

Ow]1 (N;uN ; L+ 12) =
1
4 : Note that 2 =2 C1 (N;L) :

Hence, since Ow] combines the Owen value and the Myerson value, it seems to us

that one cannot reasonably expect general stability results for Ow]. Nevertheless, in view

of (4.2) and (4.3), it is immediate that Ow] satis�es the following component restricted

version of LM for superadditive games.

Theorem 5.11 (Component restricted link monotonicity, CLM). If (N; v) is superad-

ditive then Ow] satis�es the following axiom: For all i 2 N and j 2 Ci (N;L) ;

'i (N; v; L+ ij) � 'i (N; v; L) :

6. Conclusion

In this paper, we introduced and advocated an e¢ cient CO-value, Ow]; which combines

the ideas underlying the Owen and the component e¢ cient Myerson value. In contrast to

the Owen value, this value is capable to exploit the inner structure of the bargaining blocs

modelled by the connected components of a graph. This way, Ow] may recognize e.g. the

role of a coordinating player who keeps a bloc together. As mentioned above, this may
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be an additional source for instability in network formation. Nevertheless, it seems to be

worthwhile to study implications of Ow] in this regard, both in general and in speci�c

applications.

The Myerson value was extended by van den Nouweland et al. (1992) to the class of

TU games with a conference structure (hypergraph on the player set) (henceforth CF-

games and CF-value) which we will call the Myerson CF-value. Remember, a hypergraph

is a pair (N;H) consisting of a set N and a subset H of the power set 2N the elements

h of which are called hyperlinks or conference structures. Let C (N;H) denote the set of

connected components of (N;H) and Ci (N;H) the component that hosts player i: Since

the characterization of the Myerson CF-value is analogous to that of the Myerson value,

one may wonder whether the results of this paper could be extended to CF-games.

Indeed, slightly adapting the arguments from this paper and van den Nouweland et al.

(1992), it is hardly more than a �ve-�nger exercise to extend our CO-value into a CF-

value with analogous properties: In the de�nition, i.e. in (4.2) and (4.3), the graph has

to be replaced by a hypergraph, and in (4.2), the Myerson value has be to replaced by

the Myerson CF-value. The characterization then involves extensions of CE, Q, CF,
and CM. Those of CE and CM are natural. The obvious extension of Q would require

'
�
N; v; 2N

�
= ' (N; v; ;) ; but in view of the de�nition of the Myerson CF-value, the

complete hypergraph 2N could be replaced by the complete graph LN as a subset of 2N :

Besides CE, the Myerson CF-value is characterized by the following modi�cation of F:
For all i; j 2 h 2 H; we have

'i (N; v;H)� 'i (N; v;Hn fhg) = 'j (N; v;H)� 'j (N; v;Hn fhg) :

This translates into the following extension of MF: For all i; j 2 h 2 H;

'i (N; v;H)� 'i
�
Ni (H;h) ; vjNi(H;h);HjNi(H;h)

�
= 'j (N; v;H)� 'j

�
Nj (H;h) ; vjNj(H;h);HjNj(H;h)

�
where

Ni (H;h) := Nn (Ci (N;H) nCi (N;Hn fhg)) :
It is easy to see that for hypergraphs containing just two-player hyperlinks the modi�ed

axioms become the original ones.
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CHAPTER VIII

On a relation between the Myerson value and the position

value

An extended version of this chapter has been published as �André Casajus (2007):

The position value ist the Myerson value, in a sense, in: International Journal of Game

Theory 36 (1), 47-55�.

Abstract

In this note, we characterize the position value for TU games with a cooperation

structure in terms of the Myerson value of some natural modi�cation of the original

game� the link agent form.
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1. Introduction

Generalizing the Shapley (1953) value for TU games and the Aumann & Drèze (1974)

value for TU games with a coalition structure (partition of the player set), Myerson (1977)

introduced a now well-known value for TU games with a cooperation structure (graph on

the player set) (henceforth CO-games and CO-value). As an alternative, Meessen (1988)

suggests the position value for CO-games which was popularized by Borm et al. (1992).

Yet another CO-value has been introduced by Hamiache (1999) which was discussed by

Bilbao et al. (2006).

Besides the elegant Myerson (1977) axioms, there are more or less general alterna-

tive axiomatizations of this value (Myerson 1980, Borm et al. 1992, Slikker & van den

Nouweland 2001). The position value was axiomatized by Borm et al. (1992) for a re-

stricted class of CO-games. Only recently, Slikker (2005) gave a general characterization.

In this note, we suggest a new way to characterize the position value. In particular,

we express the position value in terms of the Myerson value. In contrast to the Myerson

value which emphasizes the role of the players, the position value focuses on the links.

Therefore, one may be tempted to split the players into separate agents, one for each link,

and then to connect a player�s agents completely. Based on this idea, we introduce the

link agent form (LAF) of a CO-game. It turns out that the sum of the Myerson payo¤s of

a player�s agents in the LAF equals the position value payo¤s of that player in the original

game.

The plan of this note is as follows: Basic de�nitions and notation are given in second

section. The third section introduces the link agent form of a CO-game and presents our

characterization of the position value. A few remarks conclude the paper.

2. Basic de�nitions and notation

A (TU) game is a pair (N; v) consisting of a non-empty and �nite set of players N and

the coalition function v : 2N ! R; v (;) = 0: v (K) is called the worth of K � N ; subsets

of N are called coalitions. The restriction of v to N 0 � N is denoted vjN 0 : A value is an

operator ' that assigns payo¤ vectors to all games, ' (N; v) 2 RN : An order of a set N is

a bijection � : N ! f1; : : : ; jN jg with the interpretation that i is the � (i)th player in �.
The set of these orders is denoted by � (N) : The set of players not after i in � is denoted

by Ki (�) = fj : � (j) � � (i)g : The marginal contribution of i in � is de�ned as MCvi (�)

:= v (Ki (�))� v (Ki (�) n fig) : The Shapley (1953) value Sh is de�ned by

Shi (N; v) := j� (N)j�1
X

�2�(N)
MCvi (�) ; i 2 N: (2.1)

For K � N; we denote by 'K (N; v; �) the sum
P

i2K 'i (N; v; �) :
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A cooperation structure for (N; v) is an undirected graph (N;L) ; L � LN := ffi; jg j
i; j 2 N; i 6= jg: A typical element of L is written as ij or �. The set of player i�s links is
denoted Li := f� 2 Lji 2 �g : Given any graph (N;L) ; N splits into (maximal connected)

components the set of which is denoted by C (N;L); Ci (N;L) 2 C (N;L) denotes the

component containing i 2 N: LjN 0 = ffi; jg 2 Lji; j 2 N 0g denotes the restriction of L to
N 0 � N: A CO-game is a game together with a cooperation structure. A CO-value is an

operator ' that assigns payo¤ vectors to all CO-games, ' (N; v; L) 2 RN :
The Myerson (1977) value � is de�ned by

� (N; v; L) := Sh
�
vL
�

; vL (K) :=
X

S2C(K;LjK)
v (S) ;K � N: (2.2)

The position value (Meessen 1988, Borm et al. 1992) is de�ned as follows. For any

CO-game (N; v; L) consider the link game
�
L; vN

�
where

vN
�
L0
�
=

X
S2C(N;L0)

v (S) ; L0 � L: (2.3)

Since vN (;) may not vanish and for convenience, following Borm et al. (1992), we restrict

attention to 0-normalized TU games, i.e. v (fig) = 0 for all i 2 N: The position value then
is given by

�i (N; v; L) =
1

2

X
�2Li

Sh�
�
L; vN

�
: (2.4)

Since � and � are component e¢ cient, i.e. �C (N; v; L) = �C (N; v; L) = v (C) for all

C 2 C (N;L) ; we assume that (N;L) does not contain isolated players, i.e. jLij > 0 for

all i 2 N:

3. A characterization of the position value

In the following, we express the position value for CO-games in terms of the Myerson

value of the link agent form (LAF) of the original game. While the position value empha-

sizes the role of the links, the Myerson value focuses on the players. Therefore, one could

think of splitting the players into separate agents which represent/control exactly one of

a player�s links. This is what the LAF does.

Definition 3.1. For any CO-game G = (N; v; L), its link agent form LAF (G) =�
�N; �v; �L

�
is de�ned as follows:

�N =
[
i2N

�N (i) = f(i; �) ji 2 N;� 2 Lig ; �N (i) := fig � Li (3.1)

�L = �Lo [
[
i2N

L
�N(i) ; �Lo := f�{�|jij 2 Lg ;�{�| := f(i; ij) (j; ij)g (3.2)

�v
�
�K
�
= v

�
N
�
�K
��

; N
�
�K
�
:=
�
ij9� 2 Li : (i; �) 2 �K

	
; �K � �N (3.3)
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Figure 3.1. The graph of a link agent form

The player set �N comprises the link agents (i; �) for all players i 2 N and all links

� 2 Li: Since we assume that there are no isolated players, all link agent sets �N (i) are

non-empty. The cooperation structure �L contains the original links ij as the links �{�| in

the link set �Lo: Further, �L completely connects the set of link agents �N (i) of any original

player i 2 N via the link set L �N(i): By (3.3), any of a player�s agents is as productive as

the original player, but one of them already su¢ ces to do the job. The former is visualized

by the following example.

Example 3.2. Figure 3.1 shows the graph of some CO-game G and the graph of its
link agent form LAF (G) : In LAF (G) ; the links which correspond to the original links in
G are drawn as solid lines while the links which connect a player�s agents are represented
by dashed ones. For example, the link f3; 4g in G corresponds to the link f3:2; 4:3g in
LAF (G) : Player 1 in G has just one link. Hence in LAF (G) ; he is represented by the
single agent 1:1. Player 2; for example, has four links in G that are represented by the
agents 2:1 to 2:4 in LAF (G) who are completely connected with each other.

Now, we can state our result.

Theorem 3.3. For any 0-normalized CO-game without isolated players G = (N; v; L) ;
we have �i (G) = � �N(i) (LAF (G)) for all i 2 N:
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Proof. Let G be as in the theorem. For any �K � �N de�ne the set of original links which

this player set establishes,

L
�
�K
�
:=
�
ij 2 Lj (i; ij) ; (j; ij) 2 �K

	
: (3.4)

For (i; ij) 2 �K � �N; this implies

�v
�L
�
�K
�
� �v �L

�
�Kn f(i; ij)g

�
(2.2)
=

X
�S2C( �K;�Lj �K)

�v
�
�S
�
�

X
�S2C( �Knf(i;ij)g;�Lj �Knf(i;ij)g)

�v
�
�S
�

(3.3)
=

X
�S2C( �K;�Lj �K)

v
�
N
�
�S
��
�

X
�S2C( �Knf(i;ij)g;�Lj �Knf(i;ij)g)

v
�
N
�
�S
��

=
X

S2C(N( �K);L( �K))

v (S)�
X

S2C(N( �Knf(i;ij)g);L( �Knf(i;ij)g))

v (S)

0-norm.
=

X
S2C(N;L( �K))

v (S)�
X

S2C(N;L( �Knf(i;ij)g))

v (S)

(2.3)
= vN

�
L
�
�K
��
� vN

�
L
�
�Kn f(i; ij)g

��
: (3.5)

where the third equation holds for the following reasons: By (3.2), (i; �) and
�
i; �0

�
are

connected within �K whenever both are contained in �K: Also, if (i; �) and
�
j; �0

�
are

connected in
�
�K; �Lj �K

�
then by (3.4) and (3.3) i and j are connected in

�
N
�
�K
�
; L
�
�K
��

and vice versa.

Any order � 2 �
�
�N
�
induces a unique order �� (�) 2 � (L) such that

�� (�) (�) < �� (�)
�
�0
�

, max
i2�

� (i; �) < max
i2�0

�
�
i; �0

�
(3.6)

for all �; �0 2 L: (3.3), (3.5), and (3.6) then implyMC�v
��

(i;ij) (�) = 0 if � (i; ij) < � (j; ij) and

MC�v
�L

(i;ij) (�) = MCv
N

ij (�
� (�)) if � (j; ij) < � (i; ij) : Since j�j = 2 for all � 2 L; it is clear

that ��
�
�
�
�N
��
= �(L) and that all induced orders are equally likely, and it is also clear

that for all induced orders �� (�) it is equally likely that � (i; ij) < � (j; ij) or � (j; ij) <

� (i; ij) : Hence, taking expectations over all sequences in �
�
�N
�
and � (L) ; respectively;

we obtain

�(i;ij) (LAF (G)) =
1

2
Shij

�
L; vN

�
by (2.1) and (2.2). Summing up over �N (i) �nally gives

� �N(i) (LAF (G)) = �i (G)

by (2.4) and (3.1).
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4. Conclusion

In this note, we introduced some natural modi�cation of CO-games� the link agent

form� which enabled us to express the position value in terms of the Myerson value and

which can be viewed as an alternative characterization of the position value. This was

achieved by shifting the focus from players to links via the LAF.

van den Nouweland et al. (1992) extended the Myerson and the position value to TU

games with a conference structure (hypergraph on the player set) (CF-games and CF-

values) which are extensions of the respective CO-values. So one could wonder whether

the result of this note could easily be extended to CF-games. Unfortunately, this is not the

case. In the proof of Theorem 3.3, it was essential that all links� by de�nition� connect

exactly two players. In a hypergraph, however, the hyperlinks may connect di¤erent num-

bers of players. Casajus (2006) accounts for this peculiarity and introduces the hyperlink

agent form of a CF-game as an extension of the LAF. Yet, the hyperlink agent form is

quite technical and lacks much of the LAF�s appeal.

Further, it might be worthwhile to explore whether it is possible to express the Myerson

value in terms of the position value of a modi�cation of the original CO-game that shifts

the focus in the opposite direction. Yet, the Casajus (2006) construction is more technical

and less natural than the LAF.

Finally, based on the LAF, one could think of the following axiom and then wonder

whether there are interesting CO-values which are component e¢ cient and invariant to

player splitting.

Axiom 4.1 (Player splitting invariance, PSI). For all 0-normalized CO-games without

isolated players G = (N; v; L), we have

'i (N; v; L) = ' �N(i)

�
�N; �v; �L

�
for all i 2 N where

�
�N; �v; �L

�
= LAF (G) :
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